

BUY
 NOW AT 1/2 Par Value
 A BARGAIN OIL STOCK
 BUY NOW "50c ${ }^{\text {on }}$ The Dollar

offers the safest investment of any oil company. They own 600 acres of land in the Texas Oil Belt. Their Spindle already contracted for on their land. A Gu her is absolutely guaranteed on Spindle Top. No assessments for stockholders. No leases. No royalties to pay.
Buy Now at 50 Cents on the Dollar. (this is only one-half par value of the stock.) The Par Value of Stock in the Chicago-Beaumont Oil Co. is $\$ 10.00$ Per Share.
$\$ 5.00$ buys one share, $\$ 25.00$ buys five shares, $\$ 50.00$ bay* ten
 TO INVESTORS Remember, Fhen you buy stock in the Chicago-
 companies who are selling at 25 cents, a share. Dont confond the ofer we are
making with that of some widd cat" companies who are eseling stock at these remingly low prices. In many instances their price is several times the par value of their stock,
and being sold by irreeprovibibe specculators at the hirbeet fogures obtainable
without regard to the value of the property or the ability of the company to pay the investors.
THE CHANCE OF A LIFETIME.
 an buy stock at one air par value and share in the increased vane or the lands and tye enomous wns the land and have a gusher guaranteed on their Spindie Top property. You can search the werra
ovar and not find such a splendid oppor tunity as the one now offered to investors by the chicagc-

 staenhers mingasing in vidue and it will pay you to connect gourseif with this Company at the present
stime and share in the prosperity which it is bound to bave. Don't neglect this oprortunity or you will
then

Buy Stock on Time with a Cusher Cuaranteed. We will sell you stock at a5s.no per share, 8300 down and balance payable just as soon as oil is produced
on our property. This is certainly aliberait fffer and is made simply to show the faith we have as to the
value of our land as oil producing properties. DISCOUNT FOR CASH. $\begin{aligned} & \text { We allow a diccount of } 10 \text { per cent. if cash aceompanies order for } \\ & \text { full amount of shares. No discount is allowed if stock is pur- }\end{aligned}$ chased on time.
PROSPECTUS. $\begin{aligned} & \text { We will pladily mail you our prospectus on request, or better still, call } \\ & \text { offlees. }\end{aligned}$
$\$ 25.00$
BUYS
SHARE PAR VALUE
$\$ 50.00$

The Chilladon-Bbadmont oil Go.
No. 306 MONTAUK BLOCK,
111-113 Monroe Street,
OHICAGO, ILL.

ESTABLISHED 1840

Geo. B. Carpenter \&Co.

MANUFACTURERS, JOBBERS AND EXPORTERS OF
Marine and Yacht Hardware and Ship Ghandlery

Gordage, Gotton Duck, Oars, Oakum, Chain, Blocks, etc., etc.

Sails, Tents, Flags, Paulins, Waterproof Govers

WE OPERATE THE LARGEST AND MOST GOMPLETE SAIL LOFT IN THE UNITED STATES

200, 202, 204, 206, 208 S. Water St. CHIGAGO, U. S. A.

BUILDINGS

MACHINE SHOP BRICR BLACKSMITH'SHOP SHIP SHED,
 SHEARS SHED,

DESCRIPTION OF WORKS
SHIP YARD CONTAINS

LENGTH ON TOP,
WIDTH ON BOTHO
DRAUGHT OF WATER OVER SIII
$\$ 5000$ IO BUYS'ES Par value $\$ 100.00$

PIERS
No.
 Shops are equipped with modern machinery capable of
Tools driven by electricity and compressed air largely used in building and repairing vessels. For further particulars and estimates, apply
C. B. ORCUTT, President

No. 1 Broadway, New York

Ihe Scherzer Rolling Lift Bridge

[^0] MAIN OFFICES :
1616 Monadnock Block, Chicago, U. S. A

Copyright 1901 by Munn \& Co.

iers, 4 Monitors, 23 Torpedo-Boats, 16 Torpedo-Boat Destroyers, and 7 Submarine Boats; 78 Vessels in all.
Boats, and 4 Submarines bave been completed.
Since the Spanish-American War.

[Entered at the Post Office of New York, N. Y., as Second Class Matter. Copyright, 1901, by Munn \& Co.]

Displacement, 11,540 tons. Speed, 16.9 knots. Bunker Capacity, 1.591 tons. A rmor: Belt, $163 / 1$ nches to 4 inches; turrets, 15 inches to 17 inches; barbettes, 15 inches: deck: flat, 234 inches, Complement, 589.

SCIENTIFIC AMERICAN

 ESTABLISHED 1845

The Editor is always glad to receive for examination illustrated The Editor is always glad to receive for examination illustrated
articles on subjects of timely interest. If the photographs are sharp, the articles short, and the facts authentic, the contributions will receive special attention. Accepted articles will be paid for at regular space rates.

PEACE AND A POWERFUL NAVY
We are building up a powerful navy for the express purpose of preserving the peace, and every battleship and cruiser that hoists her flag in commission is a pledge that the peace will be kept. In the past few years we have made wonderful advancement in possessions, in commerce, and in wealth; and great as have been the additions to our naval strength, they have been trivial in comparison to the enlargement of the national interests, which the Navy is called upon to defend.
In all sincerity we proclaim ourselves to be a peaceloving people, and in adding ship to ship we believe we are making more remote that day when the ambitions of other nations might have led them to violate those clearly-stated and easily-understood principles, by which we wish to regulate our conduct as one of the great nations of the world. In an earlier age, to possess the implements of war was to make haste to use them; to-day the nations that maintain the greatest armaments appear to be the most reluctant to set them in motion. It is certain that so long as our naval strength is adequate to our necessities, war will never be thrust upon us.
As a journal devoted to the peaceful arts, we present this delineation and description of our growth as a naval power, in the firm belief that the first and last duty of our navy, the fundamental object of its existence, is to place the nation in a position of defense so secure and unassailable that we may pursue the arts of peace without fear of molestation, or even the shadow of affront.
The spirit which at once begets and controls our determination to have a navy commensurate with our national standing was admirably defined in a recent utterance of the Secretary of State: "There will be no more surrender of our rights than there will be violation of the rights of others. No wantonness of strength will ever induce us. to drive a hard bargain with another nation because it is‘ weak, nor will any fear of ignoble criticism tempt us to insult or defy a great Power because it is strong."

WARSHIP CONSTRUCTION AT THE GOVERNMENT NAVY YARDS.

Popular delusions die hard; and one of the most pernicious and persistent of these is the belief that warship construction when done by the government is poorly done, and costs more than it does at private yards. There was a time, it is true, when the navy yards could not compete with private firms; but that was a day when the yards were overridden by political influence, and encumbered with lazy incompetents, who owed their positions to "pull" with the local politicians. Thanks to the trenchant reforms instituted and carried through, largely by the efforts of the present Chief Constructor, Rear-Admiral Bowles, our navy yards have been entirely emancipated from politics, and the organization, plant, discipline and character of work turned out, have been brought up to a standard that is fully equal to that of the best private establishments.
The Naval Constructors: believe, and we fully agree with them, that the time has come when it would be to the nation's advantage to have a certain proportion of its ships constructed in government yards. The plant and the working staff at New York and Boston have been brought up to such a state of efficiency that the largest battleships could be constructed with economy and great efficiency. The high cost of the "Texas," the "Maine" and other government-built ships cannot be quoted against this statement, since those vessels were built before the yards were reorganized, and when the plant was old and inefficient.

The construction of ships in government yards would have a two-fold advantage. It would stimulate would have a two-fold advantage. It would stimulate
private builders to exhibit some of that dispatch, private builders to exhibit some of that dispatch, of our battleships are a year and a half, and our tor-
pedo-boats two and a half to three years behind their contract date), and it would be possible to keep the well-trained navy yard forces continuously at work, instead of having to discharge a large part of them, whenever routine repair work is slack.
The practice of building some of the warships in government yards is followed to advantage in the leading European navies. We should adopt it here.

OUR NAVAL DEVELOPMENT SINCE THE WAR WITH SPAIN.

In undertaking to describe the growth of the United States navy since the war with Spain we were somewhat at a loss to determine the best basis on which to make the comparison between our standing in 1898 and in 1901; but since the special naval number which we published at that time served to make our readers thoroughly familiar with the ships that actually took part in the naval operations of 1898 , we have decided that in the attempt to make clear our post-bellum progress, we cannot do better than eliminate the vessels that were in commission during the war, and give in the present number a description and illustration of every type of ship that has been either commissioned or completed, or is now under construction, or whose construction has been authorized since the war. Just how numerous and imposing will be this new navy may be judged from a glance at the inset drawing, showing the vessels grouped in one vast fleet. The effect of this illustration will be deepened by a study of the table showing the details of displacement, speed, armor and armament which will be found at the close of this issue. For a still more detailed description of the vessels, the reader is referred to the. larger illustrations, which include one of every type of vessel shown in the general view of the fleet.
We wish, however, at the very outset to emphasize the fact that no one, even after such a careful study of our new navy as we have just suggested above, will obtain an adequate knowledge of the great advance which we have made since the war, unless he pays particular attention to the fact that the armor and guns carried by the new ships are vastly superior to those which won the victories of Santiago and Manila Bay. Gun for gun, thanks to improved gun steel and smokeless powder, the weapon of to-day delivers a blow which is in some cases nearly 100 per cent greater than that delivered by the same piece in 1898; while the armor with which the latest of our ships will be protected has from 20 to 25 per cent more power to resist penetration than the best armor carried by our vessels in the war, and from 40 to 50 per cent superiority over the older armor, that was fabricated before the introduction of the Harvey and Krupp systems of face-hardening. There is to be considered furthermore the great advantage conferred by the substitution of smokeless for the old smokeproducing powder. Recent testimony of naval officers in regard to the Santiago operations has shown how greatly our ships were impeded by the smoke from their own guns, some of the vessels being at times as completely bewildered as to the actual conditions of battle as if they were enveloped in a dense sea fog. In the new vessels, in spite of the greater rapidity of fire, and the enormously increased velocity and energy of the projectiles, the crashing discharge of the batteries will be accompanied merely by a slight haze, similar somewhat in its atmospheric effect to that of summer heat, and even this will be quickly dissipated. Moreover, improved mounts, perfect balancing of the guns, and telescopic sights, will enable the gunner to keep his piece, except in a heavy seaway, continually upon the object; and it is pretty certain that if our ships are ever again called to cast loose their batteries in a naval engagement the efficiency of their gun-fire will be increased four-fold or more. There will be no such record as the 3 per cent, only, of hits, which was the best we could do in the fight with Cervera's fleet.
Nor must we in estimating the fighting value of our new navy forget that there has been a decided advance in that most vital element of a ship-motive power. The improvements in gun steel have been accompanied by improvements in steel for boilers, for shafting, and for the moving parts of engines. The old Scotch boiler, admirable as it is, has given place to the water-tube type with its rapid steaming abilities and Itg larger rate of horse power per unit of weight. The economy of weight in motive power, and the even greater saving of weight accomplished by better methods of armor-plate making, have enabled the naval constructor to allot a larger share of the total displacement to motive power, with the result that speeds have gone up from the 15 knots of the "Indiana" to the 18 and 19 knots of the "Maine" and "Virginia" classes.
Lastly, and perhaps most important of all, there is the fact that the new fleet is made up of vessels which are pre-eminently sea-going, with lofty freeboard, a greatly increased radius of action, and a much more generous provision for the comfort of the crew. This last feature, known technically as "habitability," is
of inestimable importance in its effect upon the con tentment and general morale of the ship's complement. Taken altogether, the assemblage of ships shown in our table is one of which we may justly be proud and we feel that there is no more fitting time than this to speak a word in praise of the careful observa tion of the trend of foreign development, the discrim inating selective judgment, the characteristic original ity, and the great professional skill which have enabled the Bureaus of Construction, Ordnance and Steam Engineering to produce a fleet of vessels which, ship for ship, we believe to be the peers, and in some respects the superiors, of any that are built or building for the navies of the world to-day.

"REVOLUTIONIZING" NAVAL WARFARE.

A'J'br: ponderous battleship, clothed with foot-thick armor, bristling with half a hundred guns, crammed with the costly products of the steel mill and the machine shop, and representing an invest ment of some seven millions of the nation's money expresses our Twentieth Century ideal of the most perfect fighting machine for naval warfare. \langle War i costly; upon the high seas it is enormously so. The history of naval warfare proves that there is no shor cut to success, and certainly none by any byway of cheap, "kill-all" devices, warranted to deal out super lative destruction to the enemy at a minimum depletion of the national funds.
It is for very good reasons that, in the evolution of the modern navy, there has been a growing tendency to increase the size and cost of the individual unit. The law of evolution is as inexorable in a warship as in the processes of natural life; and in leading us to the best possible type it is scarcely less sure a guide. So complete is the interchange of ideas among the naval architects of the world, and so singularly free are they from that tendency to cling to national types, which in other. spheres of activity prevents unfettered development, that we are justified in be lieving that the present make-up of our navies is about the best that could be devised for the work they have to do.
Naval development, then, has always moved in the direction of big units, that are slow and costly in construction, but represent, each, a vast concentration of fighting power, whether for attack or defense. Our battleships have grown in ten years from the 6,000 tons of a "Texas" to the 16,000 tons of a "Georgia," and our 5,000-ton cruiser "Chicago" of 1885 finds its counterpart in the 14,000 -ton "California" of fifteen years later.
The history of modern naval development shows that inventors have been quick to appreciate the weak point in this policy of concentrating the fighting strength in a few large units rather than in many smaller ones; and periodically the naval world has been startled by the advent of small, cheap, easily built devices, which at one fell stroke were to "blow" anywhere from one to seven million dollars' worth of ship "out of existence," and incidentally were to "revo lutionize" the whole theory of naval construction.
The naval revolutionist is ever with us; and no even the contemplation of the long and steadily growing list of naval engines of destruction that failed to destroy, deters each new "annihilator" from being duly heralded as sounding the death-knell of the battle ship and the breech-loading rifle.
There' are but few of us so young but we can remember the advent of the torpedo-boat, and the feverish haste with which the naval powers vied with each other in setting afloat whole squadrons of these now-discredited craft. For the torpedo-boat found its immediate answer, first in the rapid-fire gun and the torpedo-net, and then in the "destroyer"-a larger edition of itself, capable of running it down at sea and sinking it with the long-range riffes with which it is armed. The predicted revolution never took place, while the battleship continued to grow in size, power and costliness.
The ram was answerable for another speedy revo lution that has yet to materialize. Great Britain built her "Polyphemus,". and the United States her "Katah din;" but the former is now doing some kind of obscure duty in the Portsmouth dockyard, while the latter has already, we believe, found an abiding rèfuge in our museum of naval curiosities. The turtle-backed submergible ram, difficult to detect, impossible to hit, or, if hit, deflecting the shot harmlessly from her rounded back, running amuck among a fleet, of unwieldly battleships and sinking them with pitiless deliberation, presented on paper, it is true, an alluring picture; but the Spanish war came and went while the "Katahdin" lay rusting at her moorings.
The raison d'être of the torpedo-boat was, of course to be found in the enormously destructive power of modern high explosives; and about the time that we awoke to the fact that the torpedo-boat had lost much of its terrors we were startled by the advent of the so-called "dynamite gun." Here at last was a demon of destruction which was worth just as many battleships as happened to come within range of its shells.

Why spend five years in building a 12,000 -ton ship when, for the same cost, one could put afloat in one-fifth of. the time a dozen fast little "dynamite cruisers," bearing the awesome name "Vesuvius," and each capable of sinking a battleship a minute by the simple expedient of tossing a quarter of a ton or so of dynamite aboard from her pneumatic guns? The Spanish war has passed into history, and with its passing was written the last chapter of the "dynamite cruiser" scare. It was a spectacular comedy, that midnight demonstration off Santiago Harbor, when the little craft was sent in to scatter "earthquakes" among the rocky bluffs of the Cuban coast. Later, on the morning of that memorable sortie from Santiago Harbor, the destroyers were the first to be destroyed, while it was a shell from the 13 -inch gun of a battleship that caused the last of the fleeing enemy to strike colors and run for the shore.

The latest annihilator of the battleship and big armored cruiser is the submarine boat. Far be it from us to deny that this type of vessel may possess tactical and strategetical possibilities, which it only requires the test of actual war to determine. Used in connection with a system of harbor defense the submarine will exert considerable moral, if not material, powers; and doubtless the possession of a few of these vessels by a blockaded port would cause the investing ships to keep continually on the move, while they would be the cause of much nervous strain and justified anxiety on the part of the enemy. But there is little likelihood that the submarine boat, any more than the torpedo shell, the ram or the torpedoboat, will drive the big fighting ship from the high seas. The submarine boat, when submerged, is only less able to see the enemy than is a torpedo-boat at the surface when enveloped in the densest of fogs, and the impossibility of sighting the enemy, or keeping close touch upon his course, reduces enormously the chances of getting in the vital blow. We shall build submarines in greater or less numbers, but from the position of undue importance which they have taken at the appearance of the first successful type, they will be relegated, like all previous "annihilators," to their

Gun and Armor Plan; "Kearsarge" and "Kentucky."
little death-dealing torpedo craft, and delivering its torpedo with unerring aim at the unsuspecting enemy. An ideal device, were it but practical; which in the nature of things it never will be, except under such a favorable conjunction of wind, weather and motionless ship, as one might wait for throughout a whole naval campaign and never secure.

There has been much evolution but no revolution in the deliberate growth of the fighting ship to its present size and power; and to the navy that can concentrate in greatest numbers the combination of a big ship, well-protected guns, a steady platform, a true eye, a quiet nerve, unflinching courage, and faultless discipline will the victory of the future belong.

Battleships.

BATTLESHIPS "KEARSARGE" AND "KENTUCKY."
The first addition to be made after the close of the Spanish war to our small fleet of battleships (we had but four first-class battleships in commission during the struggle) consisted of two sister ships, the "Kear. sarge" and "Kentucky," of about the same displacement and speed as the "Iowa," but differing radically in their armament from that vessel.
The most novel feature of the "Kearsarge" was the introduction of the nowfamous superposed turret, over which there has been waged one of the most strenuous controversies of modern times. The object aimed at in this device is the securing of the greatest possible arc of fire for the various guns, and particularly for the 8 -inch rifles. It was considered that by dispensing with four of the eight 8 -inch guns as installed on the "Oregon," and placing the remaining guns and turrets on the roof of the 13 -inch gun turrets, there would be the same concentration on either beam and also a dead-ahead and dead-astern fire, which would not be accompanied with any inconvenience to the 13 -inch gun turrets. There would thus be a complete saving of the weight of four guns, two 8 -inch turrets, and the necessary ammunition hoists, turning gears, etc. The idea of the double turret was from the first very strongly opposed by the Naval Bureau of Construction, both on structural and military grounds, an opposition which has at last succeeded in excluding the system altogether from our latest battleships.
Briefly stated, the structural objections are: The concentration of weight so near the ends of the vessel, tending to impair her seaworthiness; the risks in docking due to this concentration; the complication involved in concentrating at one point the large ammunition supply necessary for the four guns, and in the juxtaposition of the four ammunition hoists and the necessary power to work them; and last, and perhaps the chief of all, the abnormal stresses to which the substructure of the double turrets would be subjected from the simultaneous recoil of four heavv

guns. These difficulties, however, have been cleverly met and removed.
The military objections, summed up, are as follows: First, the danger of all four guns being disabled by one successful shot; secondly, the reduction in the number of separate 8 -inch gun positions, as compared with the "Oregon" type, and the attendant danger that in the last stages of a hard-fought action no 8 -inch fire would be available on account of disablement; thirdly, the lack of mobility in the 8 -inch guns, arising from the fact that they must be trained with the 13 -inch guns beneath them, whereas it might be desirable to use the heavy guns on one portion of the ship and the lighter guns on some other; fourthly, the disconcerting effect upon the sighting of the other three guns in the turret by the sudden firing of the fourth gun, necessitating, as it probably would, the resighting of those pieces; and, lastly, the risk of intrusting the training of four great guns to the skill of a single individual.
The protective deck, which in the "Kearsarge" is 3 inches thick, is indicated in the sectional view herewith shown by the full black line at the bottom of the cut. Immediately upon it is built up the great circular wall of the barbette, which extends vertically to a few feet above the main deck of the vessel and is protected by 15 inches of armor. Immediately behind this armor is a backing of oak timber, which in its turn is backed up by the heavy steel framing of the barbette. Within the barbette, and at a height of about 8 or 10 feet above the protective deck, is a massive circular track, upon which is carried, and upon which rotates, the massive double turret, the rollers upon which the turret turns being clearly shown in the engraving. Just inside of the circle of rollers, and bolted to the circular table on which the track is placed, is a large circular rack, which is engaged by the turning gear with which the turret is operated. The power for turning the turret is supplied by two 50 horse power electric motors, which are located below the floor of the 13 -inch turret. These motors revolve in the same direction, both driving through bevel gears a horizontal shaft which runs across the turret. The shaft carries at one end a right-hand and at the other end a left-hand worm, each of which engages with a worm wheel at the top end of a vertical shaft. At the lower end of the vertical shaft of each of the worm wheels is a pinion which meshes with the circular rack inside the barbette, thus driving the turret.
One 20-horse power motor is located under the
central girder of the turret for the operation of each of the 13 -inch ammunition hoists, the arrangement being shown in the illustration. Each 8 -inch ammunition hoist is worked by a 6 -horse power motor, and there are also special motors ior elevating the 13 -inch guns and for working the rammers which are located to the rear of the breech of these guns.
It will be noticed that whereas the front wall of the 13 -inch turret lies within the circle of the barbette, the rear wall extends several feet beyond it. This is due to the fact that the section is taken on the longer axis of the turret, which is elliptical in shape, this form being better suited to the movements of the gun crews, reducing the unoccupied space at the sides and giving more space to the rear of the guns where it is needed.

Gun and Armor Plan ; "Alabama " Class. "Alabama," " Wisconsin," " Illinois."
gun deck is located a broadside battery of fourteen 40 -caliber 5 -inch rapid-fire guns, and the whole battery is protected by 6 inches of armor with 2 -inch steel bulkheads between each gun. At the barbettes transverse bulkheads extend across the vessel, protecting the central portion of the vessel from raking fire. At the level of the waterline these bulkheads are 10 and 12 inches in thickness; on the berth and gun decks they are 5 and 6 inches thick. The armor on the barbettes is 15 and $121 / 2$ inches, on the lower turrets 15 and 17, and on the upper turrets 9 and 11 inches in thickness. At the level of the top edge of the waterline belt will be a $23 / 4$-inch protective deck, which will be thickened to 3 inches forward to the bow and 5 inches aft to the sternpost, the deck abaft the after barbette being increased in thickness to compensate for the absence of waterline protection.
The "Kentucky" and "Kearsarge," which were built at Newport News, are among the handsomest battleships afloat, and although the freeboard of 14 feet is low and the 5 -inch gun is too light for the perforation of 6 -inch armor except at rather close ranges, they are most serviceable ships and a valuable addition to our navy. At some future day we look to see the superposed turrets removed, the 8 -inch guns emplaced in sponsons at the four corners of the broadside battery, and the fourteen 5 -inch replaced by ten 6 -inch rapid-fire guns.

"ALABAMA" CLASS-FIRST-CLASS

BATTLESHIP " WISCONSIN."
On June 10, 1896, Congress authorized

The elliptical turret is otherwise known as the balanced turret, the weights being so adjusted that there is practically no excess of load on any part of the turntable. The front walls of the turret are 17 inches in thickness, decreasing to 15 inches at the sides and rear.
As compared with the "Oregon," the "Kentucky" is 20 feet longer on the waterline, and has 3 feet more beam, 6 inches less draft and 1,252 tons more displacement. Her maximum coal supply of 1,591 tons of coal is about the same, and she has the same speed, 16.8 knots per hour. Her waterline belt, however, is carknots per hour. Her waterine bett, however, is ap to the stem, tapering from $161 / 2$ inches amidships to 4 inches at the bow. The "Oregon" is unprotected at the waterline from the forward barbette to the stem and from the after barbette to the stern. Amidships the belt is $161 / 2$ inches at the top edge, $131 / 2$ inches at the waterline and $91 / 2$ inches at the lower edge. Above the waterline belt is a wall of 5 -inch armor, extending to the gun deck. Upon the
the construction of three first-class battleships, which have recently been completed and are known as the have recently "Ween completed and are known as the named was constructed at the Cramps' Shipyard, the "Illinois" at the yard of the Newport News Shipbuilding Company, and the "Wisconsin," which is herewith illustrated, was built at the Union Iron Works, San Francisco. These fine vessels introduced a type of battleship that seems likely to become the standard type for the United States navy. Several new features are introduced in these ships, among which we may mention a change in the framing, the main frames being continuous from the keel to the armor shelf, and from the armor shelf to the upper deck. The longitudinal frames are built on a system which gives special stiffness and rigidity to the floors of the vessels, and reduces the liability to damage in grounding and docking. Special docking keels have been provided, these last being a great safeguard against undue strains when the ship is taking

Displacement, 11,653 tons. Speed, 17.2 knots. Bunker Capacity, 1,310 tons. Armor: Belt, $161 /$ inches to 4 inches; turrets, 14 inches; barbettes, 15 inches; deck, flat $23 / 4$ inches, slopes 3 inches
to 4 inches. Bateries: to 4 inches. Batteries: Four 13-inch B. L., fourteen 6 -inch R. F., sixteen 6 pounders, sis. 1-pounders, four Colts, two 3-1nch tield guns. Torpedo 'Tubes, 4. Complement, 590 .
the keel blocks. The coal bunkers have been designed with a view to easy stowage and accessibility for firing, and at the same time they have been placed so as to give a maximum protection to the boilers. A new departure also is the method of placing the boilers, which are arranged fore and ${ }^{-}$aft, the two smokestacks being placed side by side, a conspicuously novel feature in ships of the United States navy.

In these vessels we see a return to the high freeboard which distinguishes the "Iowa" from the "Kentucky" and the ships of the "Oregon" class, whose freeboard is not more than 12 or 13 feet. In the
"Alabama" class a spar deck extends from the bow throughout two-thirds of the length of the vessel, terminating just forward of the after barbette. This feature not only gives better sea-going qualities, but the forward guns are given an extra command of about 7 feet, and a considerable increase of berthing space is provided for the crew. The hull is protected at the waterline by a belt of Harveyized armor with a maximum thickness of $161 / 2$ inches, the belt extending from 3 feet 6 inches above to 4 feet below the normal low waterline. The maximu'm thickness is maintained throughout the entire length of the engine and boiler
spaces. Above the belt, over the same spaces, is a $23 / 4$-inch protective deck. Forward and aft of the barbettes the protective deck slopes toward the sides of the vessel and has a thickness of 3 inches toward the bow and 4 inches toward the stern of the ship. Where the protective deck is sloped at the sides there are cofferdams, 3 feet in width, packed with cornpith cellulose, which has the property of swelling and forming a water-tight packing should the waterline be penetrated by a shell. Forward and aft of the mair armor belt are transverse bulkheads of 12 -inch armor From the wake of the forward barbette to the bow

ENGINES OF THE "WISCONSIN."
Cylinders : High Pressure, 33/6 inches; Intermediate, 51 inches; Low Pressure, 78 inches; Stroke, 48 inches. Working Pressure, 180 pounds tur the square inch. Horse Power, $12,609$.
the waterline armor is reduced in thickness, tapering to 4 inches as a minimum. From the top of the main armor belt to the main deck protection is afforded by a belt of $51 / 2$-inch armor which turns in to meet the barbette, thus forming a completely inclosed citadel. Immediately inside the $51 / 2$-inch armor are worked cofferdams, 3 feet in width by 3 feet in height, which are packed with corn-pith cellulose. Above the $51 / 2$-inch belt is another continuous wall of $51 / 2$-inch armor which extends from the main deck to the spar deck. This wall also terminates in forward and after transverse bulkheads. Within the protected citadel thus formed is mounted on the main deck a broadside battery of eight 6 -inch 40 -caliber rapid-fire guns, and on the same deck forward toward the bow, two 6 -inch guns are mounted in two sponsons protected by 6 inches of armor. It should be mentioned that. $11 / 2$-inch splinter bulkheads are worked in between each pair of 6 -inch guns in the central battery. On the spar deck above the broadside battery are four additional 6 -inch guns, with an arc of fre from abeam to dead-ahead and dead-astern. These guns also have 6 inches of armor protection. The armor on the conning tower is 10 inches in thickness and the tube which connects the conning tower with the central station below the protective deck has walls 7 inches in thickness
The main battery consists of four 13 -inch guns, mounted in turrets, one forward and one aft, protected by 15 inches of armor, which is increased to 17 inches on the port plates. These port plates, by the way, are another innovation, being inclined sharply to the rear with a view to defiecting projectiles and presenting a greater horizontal fiecting projectiles and presenting a greater horizontal thickness to penetration should the projectiles ."bite."
The barbettes are protected by 15 inches of armor. The barbettes are protected by 15 inches of armor.
The turrets, like those on the "Kentucky," are oval, the oval form being adopted to reduce unnecessary space at the side of the guns and provide extra room behind them for handling and loading. Another good feature of these turrets is that the center of gravity of the rotating parts lies in the axis of rotation, and the turret, being thus exactly balanced, can be turned without difficulty, even when the ship is rolling or has a heavy list. The forward 13 -inch guns have a fine command, their axis being $261 / 2$ feet above the normal load waterline. The after turret swings just above the main deck and has a command of 19 feet. Each turret has three sighting hoods. The one in the center is occupied by the officer whose duty it is to keep the guns pointed at the target, and who is simply concerned with the turning in a lateral direction. The hoods on either side are occupied by the gun pointers, who attend to the elevation and depression of the guns. The secondary battery is made up of sixteen 6 -pounder, rapid-fire guns, six 1-pounder, four Colts, and two 3 -inch rapid-fire field guns for the use of landing parties. The vessels are provided with four long Whitehead torpedoes, which are discharged from the berth deck, the torpedo tubes being located behind the protection of the $51 / 2$-inch side armor. Although the contract speed for these vessels was only 16 knots, they each did over a knot better, the trial speed of the "Alabama" being 17.1 knots, that of the "Wisconsin" 17.17 knots, while the "Illinois" made 17.45 knots. As may be seen from the accompanying photographic view of the "Wisconsin," these vessels present a fine, seaworthy appearance, and while somewhat behind the battleships of their date in speed, they are superior in armament and protection.

ENGINES OF THE BATTLESHIP "WISCONSIN."
Although the work of the Bureau of Steam Engineering of the navy does not figure so prominently in the illustrated journals of the country as that of the Bureau of Construction, which is responsible for the design of the hulls of our warships, it is no less important, and to its efficiency we owe much of our naval prestige. Witness the feat of the "Oregon" in steaming 14,000 miles to the theater of war, and almost on the day of her arrival giving successful chase to a 20 -knot cruiser and bringing her to, with a shell from her forward gun. Well-designed and well-built motive power and efficient engine room service did far more to win the victories of the late war than they have ever received credit for.
The engines of the "Wisconsin," herewith illustrated, were designed by the Bureau and built by the Union Iron Works, San Francisco. There are two sets of engines, rights and lefts, placed in separate water tight compartments, separated by a longitudinal bulkhead. They are of the vertical, inverted-cylinder, direct-acting, triple-expansion type. The high-pressure cylinder is $331 / 2$ inches, the intermediate 51 inches, the low-pressure cylinder 78 inches in diameter, the common stroke of all pistons being 48 inches. The maximum indicated horse power of the two sets as developed on trial was 12,609 .
Tre framing consists of special forged and bolted up columns for the back, and forged steel, turned columns for the front side. The forged column con-
sists of two forged, scrap-iron, plate sides, with fianges for securing the column to the bed-plate, forged solid with the sides, as are also the fianges for securing the columns to the cylinder bottoms. Between these two sides is secured the casting that forms the main guides, which extends clear through from the front to the back of the columns and forms a rigid connection between the two sides. Below the guides the sides separate and form an inverted Y-frame, and here a plate is worked in between the two legs forming a strong intercostal. The construction provides a frame of great rigidity, which does not weigh any more than the cast steel frames, and provides a greater certainty of absolutely reliable material. It has given complete satisfaction in the engines of the "Olympia" and the "Oregon," and has been readily accepted by the Bureau of Steam Engineering in place of the type called for in the original specifications of these engines. The crank shaft is made in three sections, which are reversible and interchangeable. The crank pins are $143 / 4$ inches in diameter and 17 inches long, and the crank webs are each $161 / 4$ inches wide by 10 inches thick. A $71 / 2$-inch hole is bored axially through each shaft and crank pin. The thrust shafts are 14 inches in diameter with 9 -inch axial holes. Each shaft has 11 thrust collars, 2 inches wide, placed $31 / 2$ inches apart, the outside diameter of the collars being $211 / 2$ inches. The propeller shafts are $143 / 4$ inches in diameter, with a $93 / 4$-inch axial hole bored throughout their length, the hole being tapered in the after section, where it passes through the propeller hub. All of the crank line and propeller shafting is of hollow, forged steel, of very high quality. The reversing gear is of the straight-push type, controlled by a hydraulic controlling cylinder and differential valve gear, and a hand pump is attached to the hydraulic end of the reversing engines for operating by hand. Thè air pumps, which are of the single-acting, vertical type, with inverted steam cylinders, are independent of the main engines. There are two air pumps for the set, which balance each other.

A special feature of the condensers for these engines is the fact that the shells are made of steel plate, the water ends being of bronze. This is a feature that may be considered as somewhat experimental, and the result of using steel for the shell will be watched by marine engineers with considerable interest. The main circulating pumps which supply the condensers with cooling water are of the centrifugal type. There are two of them, one being placed in each engine room. When they are used as emergency pumps on the bilge of the ship they will have a capacity of 12,000 gallons per minute each. Each engine room is also fitted with an auxiliary condenser with its air and circulating pumps, fire and bilge pumps, main and auxiliary feed pumps, and hydraulic steering pumps in duplicate.
The screw propellers are of manganese bronze and are three-bladed, the pitch being variable from 16 feet 6 inches to 18 feet 6 inches, the designed pitch being 17 feet 6 inches. The diameter of the propellers is 15 feet 6 inches. The starboard propeller is right, and the port propeller left-handed. Each blade is firmly bolted to the boss by tap bolts of rolled manganese or Tobin bronze, secured by lock plates. An interesting feature is that the hubs and plates for these propellers have been tinned, this being done for the purpose of maintaining a better surface on the propellers, and also with a view to mitigating, to a certain extent, any galvanic action which may arise between the propellers and the adjacent steel structural material. The ship carries eight single-ended steel boilers placed in four compartments, two boilers in each compartment. Each boiler has a mean outside diameter of ment. Each boiler has a mean outside diameter of
15 feet $61 / 2$ inches, and an outside length of 10 feet. 15 feet $61 / 2$ inches, and an outside length of 10 feet.
They have a total grate surface of 685 square feet and They have a total grate surface of 685 square feet and
a total heating surface of 21,200 square feet; the boiler pressure is 180 pounds to the square inch.

"MAINE" CLASS—FIRST-CLASS BATTLESHIP " MAINE."

The "Maine" class of battleships, which includes the "Maine," "Missouri" and "Ohio,' was authorized -May 4, 1898. The first plans drawn up for these vessels were almost identical to those of the preceding ("Alabama") class. The announcement of their contract speed, which was set down at 16 knots, aroused a storm of criticism, on the ground that this was at least 2 knots less than the average speed of foreign battleships at that time under construction, and the agitation resulted in a decision to enlarge the ships, and give them a speed of 18 knots an hour. The amended designs were a great improvement over those which they superseded. While the hulls are similar to the "Alabama" type, they are refined by the addition of 20 feet amidships, this lengthening being made to accommodate the increased motive power necessary to give the additional 2 knots speed. It also admitted of the addition of two more 6 -inch guns to the broadside battery. The improvement of the "Maine" over the "Alabama" was not confined, however, to speed. The developments in armor manufacture, during the few years preceding the construction of the vessel, due to the introduction of
the Krupp process of face-hardening, had enabled our Naval Constructors to secure the same amount of protection with considerably less thickness of armor, the weight thus saved being distributed judiciously among the other offensive and defensive elements of the design. Moreover, the Bureau of Ordnance had succeeded in making a highly satisfactory form of allnitrocellulose smokeless powder, and it had brought out an entirely new set of guns suitable to the new powder, of great length and high velocity, which, piece for piece, were vastly more powerful and effective than the earlier weapons. Water-tube boilers had also been developed to a point at which the Bureau of Engineering felt justified in adopting them exclusively in the "Maine" class. One advantage of the reduction of weights, due to the use of improved materials of construction, is seen in the increase of the maximum coal-bunker capacity from 1,355 tons in the "Alabama" to 2,000 tons in the "Maine."
The hull is constructed with the usual double-bottom, elaborately subdivided, and controlled by powerful pumps. The upper, or spar-deck, as in the "Alabama," extends aft to the after barbette, the freeboard iorward being 19 feet and aft 11 feet. The vessels have the seaworthy qualities and handsome appearance of the "Alabama" class, but the effect is enhanced by the greater length and by the arrangement of the funnels on the longitudinal axis of the vessel instead of transversely, as in the preceding class. The waterline belt has a thickness amidships of 11 inches at the top and $71 / 2$ inches at the bottom. It extends from abaft of the after barbette forward to the stem, decreasing to 4 inches in thickness as a minimum at the bow. The protective deck is $23 / 4$ inches on the fiat above the engine and machinery spaces and slopes with a thickness of 3 inches to the bow, and aft, with a thickness of 4 inches, to the stern. Diagonal bulkheads of heavy armor will extend athwartship from the main armor belt at each barbette. Resting upon the main belt and its bulkheads is another wall of armor, 6 inches in thickness, which will be about 16 feet in height and will extend unbroken, from the main belt to the upper spar deck. This wall of armor will prevent the entrance of explosive shell beneath the central, 6 -inch rapid-fire battery, and will form a complete wall in front and around this battery.
The turrets containing the four 12 -inch guns will have a thickness of 11 inches and 12 inches on the port plates. Forward, in the bow, the two sponsons which carry, each, a 6 -inch gun, will be protected by 6 inches of armor, and the same thickness will protect each pair of guns on the upper deck amidships. All of this armor will be face-hardened by the Krupp process and, ton for ton, its resisting power will be from 40 to 50 per cent greater than that of the untreated plates, with which our ships of twelve or fifteen years ago were protected. The main armament will consist of four of the new smokeless powder, 40 -caliber, 12 -inch guns, and sixteen 6 -inch smokeless powder 50 -caliber guns. This 12 -inch gun has developed on trial a muzzle energy just under 48,000 foot tons, or nearly double the energy of the 12 -inch guns of the "Iowa," when using brown powder during the war. The 6 -inch gun has shown a velocity of over 3,000 feet per second and a muzzle energy of over 6,000 foot tons, or about double that of the 6 -inch guns firing brown powder with which cur vessels were equipped during the Spanish War
Other novel features in the "Maine" class are the fitting of under-water torpedo tubes, the advantage of which over above-water torpedo tubes in respect of safety from explosion by the enemy's shell-fire is obvious. The lessons of the war, as shown in the destruction by confiagration of Cervera's fieet, are exemplified in the fact that wood is used very sparingly throughout the vessel. With the exceptions of the main deck outside the superstructure, the upper deck and the bridges, decks will be covered with linoleum, rubber tiling, wire mats or cement, and such wood as is used will be fully fireproofed. Wherever it is possible light metal will be used for gangways, bridges and all fixtures, except such as can be readily thrown overboard when going into battle. Another noteworthy feature in these vessels is that electricity will constitute the motive power of many of the auxiliary engines. It will be used to run the ventilating blowers, hoist the ammunition, to turn and control the turrets, besides furnishing light throughout the vessel and providing current for four searchlights and a double set of Ardois night signals.
" VIRGINIA" CLASS-FIRST CLASS BATTLESHIP "GEORGIA."
The five great battleships of the "Virginia" class form by far the largest and most important addition ever faade to the United States navy. Never before have we built so many armored ships of one class, and never a vessel of the great displacement of 14,948 tons. The "Maine" of 12,300 tons is a big ship; but the "Georgia" will be larger by 2,648 tons. The story of the increase is shown in the accompanying table.

The vessels of the "Virginia" class will be known as the "Georgia,", "Nebraska," "New Jersey," "Rhode Island" and "Virginia." The first three were author

first-class battleship "maine." also "missoubi" and "oHio."

Battleship.	Authorized.	Length.	Displacement.
Texas.	1886	301 feet.	6,315 tons.
Oregoul.	1890 1895	3488	10, 11.548
Maine......	1898	3×8 "	12.300 \#
Geurgia.	1901	435 "	14,948 "

ized on March 3, 1899; the last two on June 7, 1900. The accepted design, as shown in the accompanying illustration, was only arrived at after a long controversy in the Naval Board on Construction, which was prompted by the revival of the question of the superposed turret. As first designed, the "Georgia," "Nebraska" and "New Jersey" were to be of 14,650 tons displacement and their main armament was to consist of four 12 -inch and eight 8 -inch breech-loading rifles, and twelve 6 -inch rapid-fire guns, besides a dozen of the new 3 -inch . rapid-fire pieces, the 8 -inch guns to be carried in four separate tur rets as in the "Oregon." In the follow ing year, when the battleships "Vir ginia" and "Rhode Island" were author ized, the acceptance and gunnery trials of the superposed turrets on the "Kearsarge" had made such a favorable impres sion that an agitation was started in favor of reviving this form of turret on the two new ships. The suggestion was opposed by the Board of Construction the same arguments being used as in the discussion over the "Kentucky" and "Kearsarge." Ultimately, as a compromise, it was decided to build three ships with and two without the superposed turrets, and a $\mathrm{f} \in \mathrm{w}$ months later the board, for the sake of uniformity, declared in favor of building the whole five ships with superposed turrets.

Of course, the most striking novelty in these magnificent ships is their great size. As compared with the "Maine" class the length has gone up from 388 feet to 435 feet; the beam from 72 feet $21 / 2$ inches to 76 feet $21 / 2$ inches; while the normal draft is 3 inches greater, or 23 feet 9 inches, as against 23 feet 6 inches. Great size has distinct advantages in the way of seaworthiness, a stable gun platform, and a wider margin of flotation when the waterline is being pierced in a close action. The greater displacement of the "Georgia" has been judiciously distributed among guns armor, and motive power. She is the fastest, best protected and most powerfully armed ship in the United States navy, and the most powerful in any navy. A great improvement over the "Maine" class will be seen

Gun and Armor Plan; "Georgia" Class. "Georgia," Nebraska," "New Jérsey," " Rhode Island," "Virginia.
and 3 feet above the waterline at normal draught. From the top to the waterline the belt will be 11 inches through, and thence to the lower edge it will taper to 8 inches. These dimensions will be maintained throughout the engine and boiler room spaces for a distance of 192 feet. Forward and abaft of this the belt will taper in thickness to a minimum of 4 inches at bow and stern. Above the main belt, for a distance of 245 feet amidships, i. e., throughout the position of the main broadside rapid-fire battery of 6 -inch guns, the sides will be reinforced by armor of a uniform thickness of 6 inches. This armor will reach all the way up to the main deck, and it will be joined to the barbettes of the 12 -inch turrets by athwartship armor of 6 inches in thickness aft, and by inclined armor of like thickness forward, yielding, in this latter case, the added protection of glacis against the head-on raking fire of an enemy. The after athwartship armor is vertical. There will be a
in the uniform freeboard of 20 feet from bow to stern. Apart from the military advantage gained in the added command of the guns of the main battery aft, there will be a net gain in accommodations, which will contribute greatly to the comfort and healthfulness of both officers and crew. None of them will be shut up behind blank walls of heavy armor, and lighted only by artificial means, the living spaces all having air ports and direct access to sunlight. The added freeboard aft, too, will make the ships more weatherly in a following sea
The hull will be protected by an 8 -foot belt reaching from stem to stern, which will extend 5 feet below mor plates, which will be an inch heavier. guns will fire through arcs of 270 degrees. Four of the 8 -inch guns will be superposed upon these turrets, fixed to move in unison, and they will be sheltered by walls of 6 -inch armor increased half an inch on the sianting face plates. The four remaining 8 -inch guns will be mounted amidships, two on each side, on the will be mounted amidships, two on each side, on the main deck, and will be housed in independent turrets similar to those placed above the 12 -inch guns. These 8 -inch rifles will have arcs of fire of 180 degrees, ranging from dead ahead to dead astern. This arrangement of the 12 and 8 -inch guns gives a bow and a stern fire of six 8 's and two 12 's, and a broadside of six 8 's and four 12 's.
The 6 -inch guns are arranged in broadside. Each gun, of which there are six on each broadside, has an arc of fire of 110 degrees, and the ports are so arranged that the guns can be turned inboard within the side line, the two forward pairs swinging forward, and the other eight guns swinging aft, the recesses being

Diaplacement, 14,948 tons. Speed, 19 knots. Bunker Capaeity, 1,800 tons. Armori Belt, 11 inches to 4 inches; turrets, 11 to 10 inches and $61 /$ to 6 inches; barbettes, 10 inches and 6 inches; two 3 -inch field guns; six automatic guns; two machine guns. Torpedo Taben, 2 submerged. Complement, 705.
long enough to bring the muzzle of the gun almost flush with the side of the ship. This arrangement does away with the inconvenience of dismounting the guns to avoid obstructions or to guard them against the stress of heavy weather. Each of these guns is sheltered behind a heavy port shield, and there is a splinter bulkhead of $21 / 2$-inch nickel steel between each gun and its neighbor on either side. The twelve $14-$ pounders, sheltered by local armor of 2 -inch steel and by shields, are to be mounted eight on the gun deck well forward and aft, and four up in the super structure on the main deck, aft of the amidship 8 -inch structure on the main deck, aft of the amidship 8-inch
turrets. The twelve 3 -pounders are to be mounted on the bridges and on the superstructure deck, while the 1 -pounders, automatic and otherwise, and the Gatlings, are to be placed in the tops and in the boats. The submerged torpedo-tubes, of which there are two, are to be placed one on each side, well forward, and the operator is to control his tube from an armored station on the deck above, sufficiently sheltered to be proof against 6 -pounder fire

The main engines will be of the four cylinder triple-expansion type, driving twin screws, capable of developing 19,000 indicated horse power, and designed to drive the ship at 19 knots. The steam pressure will be 250 pounds, and the cyl inders will be: H. P. 35 inches, I. P. 57 inches, and two L. P. each of 66 inches dia by 4 feet stroke. Number of revolutions a minute, 120. There will be twenty-four boilers of the straight water-tube type, placed in six water-tight compartments. They will have quite 1,280 square feet of grate and 55,000 square feet of heating surface. The air pressure in the ash-pits will not exceed one inch of water. Each ship will be fitted as a flagship and accommodations will be provided for 37 officers and 668 seamen and marines; a total complement of 705 persons.

Monitors

"ARKANSAS': CLASS-THE MONITOR "ARKANSAS."
It is safe to say that the four monitors "Arkansas," "Wyoming," "Connecticut" and "Florida," which are now under construction for the United States navy, are the last monitors that will be built for our own or any other navy. In the light of modern developments the type is discredited. Indeed, these four will owe their existence to panic legislation during the late war due to the fear of bombardment entertained by some of the leading Atlantic cities. The monitor is purely a harbor-defense vessel, and would be practically use less, if not, as Sampson's operations off the northern coasts of Cuba and Porto Rico proved, a positive incumbrance in naval operations on the high seas.
The monitor lacks those prime qualities of a fight ing ship-seaworthiness, steadiness as a gun platform habitability, and mobility. As regards this last, one

The stem is carried well forward below the water and formed into a powerful ram. The maximum beam is 50 feet; and the draught upon the normal displacement of 3,235 tons is $121 / 2$ feet. Upon this displace ment the ship carries, closely stowed in the bunkers, 400 tons of coal.
The hull is of steel, unsheathed, with an inner bottom reaching up to the armor shelf and ranging fore and aft throughout nearly the whole length of the ship. This intramural space is extensively subdivided into water-tight compartments, and, like the large, main compartments of the ship proper, it is under the control of a pumping plant of large capacity.

Gun and Armor Plan; "Arkansas" Class. "Arkansas," " W yoming," Connecticut," and "Florida."
right upon the fundamental plating. Wherever possi ble, woodwork is omitted and supplanted by light metal bulwarks, etc., but where wood is found needful for the sake of health and the saving of weight, it is carefully fireproofed.
The ship is propelled by twin screws driven by two triple-expansion engines, placed in one watertight compartment. These engines are of the vertical, inverted-cylinder, direct-acting type, each with a high-pressure cylinder of 17 inches, an intermediatepressure cylinder of $261 / 4$ inches, and a low-pressure cylinder of 40 inches, the stroke of all pistons being 2 feet. The collective indicated horse power of the propelling and the circulating pump engines will be 2,400 when the main engines are making in the neighborhood of 200 revolutions per minute. Steam is supplied at a working pressure of 250 pounds, by four water-tube boilers, having a total grate surface of quite 200 square feet, and a total heating surface of 8,800 square feet, and capable of supplying all the steam on shipboard when running at full power.
The vessel is lighted by electricity, while the turret mechanisms and all the ammunition hoists will be actuated by the same power. By the adoption of electricity so generally, the presence of long passages of heating steam pipes is obviated, and in this way alone a very considerable reduction of temperature will be effected under service conditions.
The main battery consists of two of the new 40 -caliber 12 -inch breech-loading rifles, and the secondary battery of four 4 -inch rifles, while the auxiliary battery includes three 6 -pounders and four auto-

The hull is protected by a continuous band of armor, extending from the main deck line down to a depth of 30 inches below the waterline amidships. This armor has a maximum thickness of 11 inches at the armor has a maximum thickness of 11 inches at the engines, the boilers, and the magazines, tapering thence to the armor shelf well below water. Forward and abaft the "vital" space the armor is graduated by easy steps till it terminates at the bow and the stern in thicknesses of five inches. The protective deck, or more properly speaking the main deck, is composed of two thicknesses of $3 / 4$-inch plating, of which the upper course is of nickel steel. This is sufficient defense against the acute angle at which most plunging shots would have to strike.
A five-sided superstructure occupies the central portion of the main deck. In the lower half are quartered some of the officers, and there, too, is the galley, the armory, some wash rooms, and spare space for the housing of part of the crew if so desired. On the next deck above, i. e., the superstructure deck, is placed the major part of the rapid-fire portion of the battery. The hammock berthing is also in the superstructure on that deck, lending a very mild protection to the matic 1-pounders.
The 12 -inch guns are mounted in a single barbette turret of the balanced type, having an inclined face with a pitch of 42 degrees. The armor for the turret and the barbette is 10 and 11 inches thick and treated by the Krupp process. The four 4 -inch guns are mounted on the four principal corners of the superstructure deck, where they will command a wide field of fire. These guns are protected by shields. Three 6-pounders are mounted on the bridge deck, while the 1 -pounders are placed on the hammock berthing amidsips, and up the single top of the berthing, amidships, and up in the single top of the military mast. The 12 -inch and the 4 -inch guns are designed for smokeless powder, the first having a muzzle velocity of 2,800 feet per second and the latter of 2,900 feet per second, the respective muzzle energies being 46,246 and 1,870 foot-tons.
The ship will carry two searchlights, one forward on the mast and the other upon a stand at the after end of the bridge deck. Every modern facility will add to the equipment and finish of the vessel, and ample quarters and bathing facilities will make life reasonably comfortable for the complement of a captain, six other officers, and 130 enlisted men.

Displacement $\mathbf{3 , 2 3 5}$ tons. Speed, 11.5 knots. Bunker Capacity, 400 tons. Armor: Belt, 11 inches; turrets. 10 inches; barbettes, 11 inches: deck, $11 / \mathrm{inch}$. Armament: Two 12 -inch Bunker Capacity, 400 tons. Armor: Belt, 11 inches; turrets. 10 inches; barbettes, 11 inch
40-caliber B. L.; four 4-inch R. F.; three 6-pounders; six 1-pounders two Colts. Complement, 137.
battleship, capable of going anywhere and casting loose her guns under any conditions, is worth a fleet of monitors, huddled within a mined and fort-defended harbor, into which an enemy's fleet will in all probability never be so rash as to force an entrance
The "Arkansas" has a waterline length of 252 feet.
gun crews of some of the smaller pieces. On the bridge or uppermost deck are carried the chart-house, the boats, and all of the 6 -pounder rifles. This and the deck just below, like the main deck, being exposed to the weather, are not fireproofed; but the berth deck, being under cover, is covered with linoleum placed

These four vessels will be used to a large extent to meet the growing need of proper schools of instruc tion for the increasing ranks of the naval militia; and it is easy to see how successfully they meet the de mand, by covering every practical branch of nava warfare, with the single exception of torpedo duty.

Guns and Armor．

LATEST TYPES OF NAVAL GUNS．

If it be considered that the striking energy of a ship， or her ability to deliver a maximum weight of pro－ jectiles against the enemy in a given time，is the supreme mark of her efficiency，then it must be ad－ mitted that the great development which has taken place since 1898 in our warships is due more than any－ thing else to the remarkably powerful guns with which they are equipped．

There is no denying that the war caught us napping in the matter of smokeless powder；and had our strug－ gle been against a first－class naval power，whose ships were armed with long－caliber smokeless－powder guns－ well，to put it mildly our repair bill well，to pur it a heavy one With would have been a heavy one．With a few exceptions our ships were
armed with old－pattern，brown－pow－ der guns，of low velocities and ener－ gies compared with the long－caliber smokeless－powder weapons with which our new warships are being equipped． The remarkable velocities obtained by projectiles in our new type of naval guns is due to the large powder cham－ ber，big charge，slow combustion and sustained acceler－ ation in the long bore of the gun，these combined elements enabling the new 6 －inch gun，for instance，to deliver its 100 －pound projectile with a muzzle velocity of 2,900 feet per second，as against a velocity of 2,000 feet per second in the old 30 －caliber 6 －inch gun，thereby more than doubling its energy．
There is no branch of the naval service in which a greater advance has been made in the past three years than in the Bureau of Ordnance，where the experimental work has been extremely successful．The starting point in the reconstruction of our naval ord－ nance was the powder；it was necessary to secure a smokeless powder that would give high ballistic re－ sults and at the same time would be perfectly stable． The Bureau has directed its attention with great suc－ cess to the development of an all－guncotton powder， from which nitro－glycerine is completely excluded，and the last report of Rear－Admiral O＇Neil states that this year＇s experience with the navy smokeless powder places it in a high position as a propellant，the results even exceeding those of the previous year．The accompanying table of the latest types of naval guns tells its own story，and we draw particular attention to the power of the new 12 －inch rifle，which after a flight of 3,000 yards has sufficient remaining velocity to perforate 19.5 inches of Krupp armor．The table includes the new 7 －inch gun，which is likely to take the place of the 6 －inch gun in the broadside batteries of our future battleships． The 6－inch gun is unequal to the penetra tion of the 6 － inch casemate armor of mod－ ern battleships at a range of 3,000 y ard 3,000 yards， whereas the new 7－inch piece can pene trate 8.3 inches of Krupp steel at that range and would， therefore，at least where the shot struck normal or ap proximately
the war，with the total energy of fire of the new＂Geor－ gia＂type now under construction．The＂Georgia＂is， of course，a larger vessel；but although the increase
as against 819,456 foot－tons for the＂Oregon，＂an in－ crease of about 340 per cent．This enormous increase of total energy is not due so much to increase in rate of fire，as to the increase of muzzle energy，which energy in some cases，as will be seen from the accom－ panying table，is about double that of the same pieces as used in 1898
It will be noted that in spite of the great increase in length，there has been a simplification of the con－ struction of the new type of guns． The 30 －caliber gun，for instance，con－ sisted of twelve separate pieces，where－ as the new 50 －caliber piece，although weighing nearly twice as much，con－ tains only half a dozen separate pieces． The substitution of a long jacket and a few long hoops for the many short hoops of the 30 －caliber gun not only cheapens construction，but adds great－ ly to the transverse strength of the piece．
It should be mentioned in connec－ tion with the table showing the ball－ istic powers of the guns that the velocities shown are the service or designed velocities．As a matter of fact，at the proving ground the new powder proved to be so excellent that higher velocities than these have been obtained with powder pressures lower than the 17 tons per square inch for which the guns were designed．Thus the
table of elfments of latest types of naval guns（models of 1899），giving perforation of face－ HARDENED ARMOR．SERVICE VELOCI＇TIES，AT RANGES UP TO 3.000 YARDS．WITH SMOKELESS POWDER HARDENED ARMOR．SERVICE VELOCITIES，AT RANGES UP TO
CAPPED AND UNCAPPED ARMOR－PIERCING PROJECTILES，AT NORMAL IMPACT

Caliberofgun．	$\begin{aligned} & \frac{\text { 喜 }}{} \\ & \text { E } \\ & \text { 雄 } \\ & \text { N } \end{aligned}$				Muzzlevelocity velocity．	Muzzle energy．	Perfora－ tion at muzzle． Krupp armor．			Perfora－ tion at 1，000 yds． Krupp armor．			Perfora－ tion at $2,000 \mathrm{yds}$ ． Krupp armor．			Perfora－ tion al 3，000 yds．		
									Krupp armor．									
							Proje	tiles		Proje	tiles．		Proje	tiles．		Projectiles．		
							$\begin{aligned} & \frac{4}{8} \\ & \frac{8}{8} \end{aligned}$			$\frac{\stackrel{1}{k}}{8}$			$\frac{\stackrel{1}{2}}{8}$	$\begin{aligned} & \text { 言 } \\ & \text { 言 } \\ & \text { 吕 } \end{aligned}$		8	䓂	
			Lbs．	Lbs．	Ft．－secs．	Ft．－tons．												
4－in．，Mark Vii	2.56	50	15	32	${ }_{2}^{2000}$	1870	6.4	5.6	${ }_{2380}^{213}$	5.2	4． 4	1955		3.7	i605	3.12		
${ }_{6}^{\text {5－in．，}}$ ，Mark V ${ }^{\text {cine }}$	${ }_{3}^{3.3}$	50 50	27 46	＋60	2900 2900 2900	退 3503	8．4	${ }_{7}^{6.6}$	2460 2525	6.7 88	5.6 6.8	${ }_{2185}^{2085}$	${ }_{7} 6.5$	4.7	${ }_{1895}^{1770}$	4.6	4．6．	
	－${ }_{13.37}^{8.37}$	50 45	${ }_{74}^{46}$	100 165	2900 2900	${ }_{9646}^{5838}$	10.9	7.3 10.5	${ }_{2580}^{2585}$	8.8 11.4	6.8 8.9	2285	7.7	${ }_{7} 6.6$	${ }_{2040}^{1895}$	8.9	5.2 6.5	
8－in．，Mark ${ }^{\text {a }}$ ．	18.	45	115	1250 500	－ 2800	${ }^{193602}$	${ }^{15 .}$	${ }^{12.1}$	${ }^{25580}$	13．2	10.4	2290 2300	11.7	－9．1	2070	10.3	${ }^{7.9}$	
12－in．，Mark IIII．	32．4	40	240 385	500 800	2800 2800	${ }_{46246}^{27204}$	${ }_{25}^{20 .}$	17.1 21.7	${ }_{2620}^{2685}$	${ }_{23}^{18.3}$	15.4 19.4	${ }_{2450}^{2390}$	$\stackrel{16.5}{16}$	13.5 17.9	223230	15.5	11.5	

NEW NAVAL，50－CALIBER， G－INGH，RAPID－FIRE GUN．
in displacement is only about 40 per cent，the total en－ ergy of five minutes＇fire at the greatest practicable rate of firing aimed shots would be $2,765,830$ foot－tons

12－inch piece has given a muzzle velocity of 2,854 foot－ seconds and corresponding energy of 47,944 foot－tons with a powder pressure of 16.5 tons to the inch．The －inch 45 ． －inch 45 － aliber gun as given a muzzle veloci－ ty of 3,000 foot seconds with a chamber pressure of 17 tons．The 6－ inch gun has shown 2,935 foot－seconds with a little with a little pressure．The －inch gun has done even bet－ ter，having de－ livered a 60－ pound projec－ tile with a muzzle velocity of 3,100 foot－

Breech Closed and Locked．

Breech－Plug Rotated Ready for Withdrawal．

Breech Opened，Ready for Loading．
seconds and 17 tons pressure; while with a 50 -pound projectile and a chamber pressure of 16.4 tons, the remarkable velocity of 3,380 foot-seconds was obtained. This is the piece that will form the main armament of the cruisers of the "Denver" class.

GUN-MOUNTS AND BREECH MECHANISMS.

The increased rate of fire of the new guns is chiefly due to the improved gun-mounts and breech mechan-

Breech of New 12-Inch Rifle Closed.
isms. In the first place, all guns recoil in a sleeve which carries the trunnions. Upon this sleeve are mounted the telescopic sights, and the man who traverses and elevates the gun, in the case of the large rapid-fire pieces, stands on a platform which is supported from this sleeve. He is thus able to keep the gun steadily upon the target, and is not affected by the recoil. His position, with his hands upon the traversing and elevat
with a crank, as the plug is too heavy and the swing is too great for opening with a lever. The time consumed in opening and closing the breech, however, is but a minute fraction of that required for the service of the gun; it is loading and pointing that take the most ime.
In the case of the 12 -inch guns, the continued movement of the crank first rotates or unlocks the plug, which is followed by its withdrawal and the swinging round of the plug. It takes about $71 / 2$ turns of the crank to open or close the breech of a 12 -inch gun, which can easily be performed in less than 5 seconds. The 8 -inch gun breech is practically the same, but being lighter, can be handled more quickly.
The recoil of the 12 -inch gun is taken up by four hy draulic cylinders placed sym metrically around the gun, but attached to the sleeve or non-recoiling part. A yoke on the rear. end of the gun serves as an attachment for the piston rods, which work in the recoil cylinders, and recoil is checked by the es cape from the pressure to the reverse side of the piston of the liquid contained in the cylinders. The escape orifices for the fluid are grooves cut in the walls of the cylinders, which are wide enough to give a full opening at the beginning of recoil, gradually contracting in area until the proper limit of recoil is reached, when the grooves come to a point and thus cut
off any further flow of liquid. The recoil of the 12 -inch guns for the "Maine" and class and for the monitors is 33 inches. Inside each recoil cylinder is a series of heavy triple-spiral springs (about one ton in weight), which are put in the cylinders under an initial tension sufficient to prevent the gun from moving when the ship rolls, or when the gun is elevated to its maximum limit. When recoil takes place these springs are furCOMPARISON OF 'TOTAL ENERGY OF FIRE IN FIVE MINUTES OF BATTLESHIPS OREGON (IN 1898) AND GEORGIA

Oregon in 1898.				Georgia.			
Gun.	Muzzle Energy of Gun.	*Rate of Fire per Minute.	Muzzle Energy in Five Minutes.	Gun.	Muzzle Energy of Gun.	*Rate of Fire per Minute.	Muzzle Energy in Five Minutes.
		0.4 . 2.0 8.0	269,016 foot_tons 320,40 119,60 $"$ 110,400 $\quad "$	4 2 2 -inch. 8 8 -inch. 12 12 6-inch. 3-inch.		0.66 1.2 3.5 6.5	$\begin{gathered} \text { 610,47 foot-tons } \\ 652.896 \\ 1,25,980 \\ 256,510 \end{gathered} \quad \ddot{ }$
Total energy all guns in five minutes.....			810,450	Total enrrgy all guns in five minutes...\| $2,765,833$			

*This is the practicable number of carefully aimed shots that could be fired per minute for a few minutes, as given by Rear-Admira O Neil, Chief of the Bureau of Ordnance.
ing handwheels and his eye at the telescopic sights, is shown clearly in the photograph of the 6 -inch gun. All guns from 3 -inch up are fitted with the "Welin" patent breech-plug, the rights for which were purchased for several hundred thousand dollars from the VickersMaxim firm. The thread is cut in steps of varying radius-a device which reduces the amount of cutting away of the thread and also the depth of theplug and the distance it must travel before it is fully inserted.

The 7-inch and all calibers below open the breech with a horizontal lever. One sweep of the lever unlocks the thread, the thread, withdraws the plug, and swings it clear of the breech, as shown in the illustration.
The 8-inch rifle and all calibers above this open
ther compressed, and they exert sufficient force to return the gun to the firing position as soon as recoil ceases. As the force exerted by these springs is great enough to return the gun to battery at extreme elevation, it follows that they have an excess of power to return the gun at level, and hence it would run out with great violence, probably injuring the mount, were it

Maximum Muzale Velocity, on trial, 2854 foot-seconds. Muzzle Energy, 47,94 foot-tons. Foot-Tons Energy per Ton Weight of Gun, 893, Chamber Pressure, 16.5 tons per square inch NEW NAVAL 12-INCH. 40-CALIBER GUN.

解 fitted in the front end of each cylinder, which gradu ally brings the gun to rest as it runs out.
The $8,7,6,5,4$ and 3 -inch guns all recoil in an oscillating sleeve. The piston rods are attached to the rear end of the gun by a yoke, and the recoil cylinder contain the counter-recoil springs. The recoil of the 8 -inch gun is 24 inches, of the 7 -inch 21 inches, of the 6 -inch 15 inches, and of the 5 -inch $111 / 2$ inches. None

Breech of $\mathbf{1 2 - I n c h}$ Rifle Open.
of the new guns above 4 inches in caliber uses the brass cartridge case, but the powder is put up in bags. The guns of and above 7 inches in caliber have the charge in two sections, as one section would be too heavy and too large to handle conveniently. In turret guns of large caliber the elevating, training, hoisting ammunition, and loading are all done by machinery operated by electric power. Guns of and below 7 inches in caliber are handworked. They are mounted on pedestal mounts, turn on ball bearings, and are balanced in their sleeves. Hence they can be elevated or depressed with great ease. In the case of the 6 and 7 -inch guns, the gun-pointer stands on a platform attached to and turning with the gun. All guns above 3 inches in caliber are fitted with telescopic sights, also with open day and night sights and with electric and percussion firing gear.
It may be well to add a word of explanation, just here, on the question of rapidity of fire. The rates of fire given in the accompanying comparison of the "Oregon" and the "Georgia" will, doubtless, appear to some of our readers to be very low; but they must remember that these are practicable and not ideal rates of fire. Lieut. Meigs, ordnance officer of the Bethlehem Steel Works, in his recent address before the Society of Naval Architects in New York, quoted approvingly a record recently made by an English ship of 8 shots from a 6 -inch gun in one minute, all of which struck a target 15 feet high, at a range of 1,500 yards. Here, the conditions were doubtless ideal, the ammunition being probably piled ready close at hand. The 3.5 rounds per minute, given in the table, represents actual conditions, in which the ammunition is beng brought, round by round, from the magazines, and all the death and the death and a sea-fight is present. Even 3.5 rounds per minute could be maintained for a few minutes only, since the heating up of the gun, alone, would necessitate \mathbf{a} rest.

ARMOR PLATE AND HIGH-EXPLOSIVE SHELLS.
Commencing with the "Maine" class, all future bat tleships of the United States navy will be protected with face-hardened armor treated by the Krupp process, which produces a plate about as much superior to the Harveyized plate as that was to the armor which it superseded. The objects sought in the manufacture of armor plate are great toughness of body to resist cracking and breaking up of the plate, and extreme hardness of the face, with the object of smashing the projectile before it can effect penetration. In the Harveyized plate great toughness is secured by using a certain percentage of nickel in making up the composition of the steel. This toughness is further secured by a. very thorough furnace and mill treatment. Face-hardening is done by' placing
second. In each case the shells broke up after penetrating from $31 / 2$ to $43 / 8$ inches only. The plate in each case was dished only one-eighth of an inch, and no further damage was done than the flaking of the face-hardened surface. No cracks whatever were developed in the plate. In the case of the Bethlehem 12 -inch plate for the "Maine," one Carpenter and two Wheeler uncapped shells were used; the striking velocities were $1,616,1,692$, and 1,723 feet per second. The shells broke up after penetrating $61 / 2,41 / 2$, and $41 / 2$ inches without developing any cracks in the plate, the only injury beyond the penetration being a flaking of the surface and a slight dishing of the plate in the first round to the extent of a quarter of an inch. The foregoing results indicate that the side, barbette, and turret armor of our latest battleships will be
of the projectiles and fuses. Lastly, it must not be attended with danger in loading into shells, and the explosive should be readily manufactured, and in large quantities, at a reasonable cost. . Among the high explosives tested were black musket powder, the Rendrock Company's No. 400 explosive, picric acid, wet guncotton pellets, maximite, and explosive "D." Of these, the last two fulfilled in every particular the conditions laid down. Their exact composition is, of course, a secret; but it is known that maximite is a picric acid compound consisting mainly of a picrate. Its products of combustion are almost entirely gaseous, and as the heat developed on detonation is very great it possesses, as the result of its high gravity, an unusually high explosive value. "Dunnite," the other explosive is the invention of Cant. Dunn. nf the army,

12-Inch Kruppized Armor Plate Representing Armor for the "Missouri," After Attack by Three 12-Inch Shells. Projectiles Smashed on Plate. Penetration. 43/8 Inches, 41/4 Inches, and 31/3 Inches.

12-Inch Kruppized Armor Plate, Representing Armor for the "Maine," After Attack by Three 12-Inch Shells. Proiectiles Smashed on Plate. Penetration, $61 / 2$ Inches, $41 / 9$ Inches, and 41/9 Inches.
the plate, face upward, in a furnace, covering it with a layer of crushed bone and other carbonaceous material, and exposing it for the proper length of time to a predetermined temperature. The face of the plate takes up a large percentage of carbon, and after tempering with cold water becomes extremely hard. The Krupp process is similar in principle. Nickel is used in making up the composition, and the steel after being taken from the furnace is subjected in the fluid state to enormous pressure in a hydraulic press, which squeezes out the gas and various impurities. The compressed ingot is heated and forged into plate in a 14,000 -ton hydraulic press, and then undergoes various processes of annealing to take out initial strains. The face-hardening is done in a fur nace where gas is substituted for the carbonaceous material of the earlier process. By this method the face-hardening is carried into the plate about twice as deeply as in the Harvey process.

We present two photographs showing the Proving Ground tests of two plates, representing armor for the new battleships "Maine" and "Missouri." The 12 -inch Carnegie plate for the "Missouri" was attacked by one Carpenter and two Wheeler uncapped shells, with striking velocities of $1,675,1,669$, and 1,664 feet per
secure against the 12 -inch shells of the enemy, except at close range.
The complete wrecking of the finest and heaviest modern armor plate by high-explosive shells, as shown in the accompanying illustrations, was the culmination of a very thorough investigation carried out by the Army Board of Ordnance at Sandy Hook, in the search for a high-explosive shell-filler that would meet all the ideal conditions as to safety, certainty, fragmentation and destructive effects. From the first appearance of high explosives artillerists have recognized how greatly they would increase the destructiveness of shell-fire, if they could be used as a shell-filler and rendered sufficiently insensitive to shock to be carried through armor plate and burst by a suitable time fuse in the interior of a fort or a battleship. The desiderata in such a high explosive are: It should be reasonably safe in manufacture; it must withstand the shock of discharge from the gun and the shock of impact when the shell struck and was passing through armor plate; it must be uni formly and completely detonated by a suitable fuse; it must possess the elements of stability-that is to say, it must not decompose under test, it must be non-hygroscopic, and it must not attack the metal
and in its qualities and action it is very similar to maximite.
The plate which is shown in the accompanying illustration so completely smashed to pieces was one of two identical plates built under an appropriation by Congress, which was granted for the purpose of testing the regular 12 -inch gun, firing service projectiles, against an 18 -inch gun which was built especially for throwing the Gathmann, guncotton, torpedo shell. The Gathmann idea is to deliver a large amount of high explosive against the outside of a battleship, under the expectation that the detonation of the charge on impact will result in the bursting in of a large section of the ship's side. The Gathmann test plate and the armor service projectile plate were backed up with steel framing representing a section of the side of the battleship "Iowa." In these tests three of the Gathmann shells, each containing about one-quarter of a ton of wet guncotton, cracked the plate from top to bottom, but otherwise did it no material injury. The plate with its backing, however, was driven 8 feet into the sand backing, and the whole mass was swung around 8 feet to the left of its original position. However, in view of the great striking energy of 52,000 foot-tons of the 1,800 -pound

An 11 1 -inch Kruppized Plate After.Attack by Threa of Our 12-Inch Armor-Piercing HighKruppized Plate After.Attack by Thre9 of Our 12-Inch Armor--
Explosive Projectiles. Plate and Backing Completely Wrecked.

Rear View of Same Target, Showing Complete Destruction Wrought by 12-Inch Armor-Piercing Shot OF ATTACE.

Gathmann shell, it was considered that the results on the plate itself were very inadequate. In the test of the service armor-piercing projectiles three rounds were fired, the first two being with armor-piercing shot filled respectively with 20 pounds of maximite and 20 pounds of dunnite, the last being an armorpiercing shell filled with 60 pounds of maximite. The projectiles burst as they were passing through the plate, which was completely broken up, and the flying fragments of plate and shells tore the steel backing literally to shreds, cut to pieces the heavy oak struts at the rear, and blew away several hundred tons of the sand backing.
As far as we know, large-caliber, high-explosive shells have never before been carried through heavy armor. Had this been done, it could scarcely have been kept a secret, and would surely have become known to the world at large. It is, therefore, evident on comparing the upper with the lower pair of photographs that, while our heaviest armor is impervious to attack at ordinary ranges by 12 -inch shells, we are in the possession of a high-explosive shell which can penetrate and burst behind the best armor employed in foreign navies.

Armored Cruisers.

ARMORED CRUISERS OF THE "MARY LAND" CLASS-"CALIFORNIA."

 The development of the cruiser during the past few years has been in two widely divergent directions. On the one hand we have the large armored cruiser of from have the large armored cruiser of from12,000 to 14,000 tons displacement, with a complete waterline belt; and well-protected positions for a main battery of two or four heavy 8,9 or 10 -inch guns, and full broadside or casemate armor for a numerous battery of broadside rapid-fire guns. On the other hand, we see the protected cruiser tending to lower speed, less protection and lighter battery. The line of division between the battleship and the armored cruiser, furthermore, is becoming less distinct; and the six magnificent ships of the "Maryland" class will be so well armored and protected that they would not hesitate to take their place in line of battle against second-class battleships, while their large coal capacity and high speed will enable them to fulfill all the requirements of the first-class cruiser.
The six fine vessels of the "California" class will be 502 feet long, or longer by 90 feet than the next largest ships in our naví; and they will be but little shorter on the waterline than ocean liners like the "St. Paul" and "New York."
The fighting positions and the "vitals" will all of them be sheltered behind walls of Kruppized steel, and the arrangement of armor protection will be as follows: First, a waterline belt 7 feet 6 inches wide extending from bow to stern, which carries its maximum thickness $41 / 2$ feet from the top down, whence it tapers to the armor ledge. For a distance of 244 feet amidships, the belt will have a maximum thickness of 6

Gun and Armor Plan; "California" Armured Cruiser Class. "California," "Colorado," "Maryland," " Pennsylvania," " south Dakota," " West Virginia."
four 45 -caliber, 8 -inch, breech-loading rifles and fourteen 50 -caliber, 6 -inch, rapid-fire guns; and a secondary battery of eighteen 14 -pounders, twelve 3 pounders, eight 1 -pounders, two 3 -inch field guns, two machine guns, and a half a dozen small-caliber pieces for boat service. There will be two submerged tor-pedo-tubes, to be placed on the broadsides pretty well forward. The 8 -inch guns are to be mounted in two balanced elliptical turrets on the main deck forward and aft of the superstructure. These turrets will be generally 6 inches thick with slanting faces $1 / 2$ inch thicker. The turrets are to be controlled electrically, and are to fire through arcs of 270 degrees. The rate of ammunition supply is one complete round of powder and projectile to each electric hoist every fifty seconds.
The four 6 -inch guns mounted on the main deck are to be placed in sponsons at the four main corners of the superstructure, and are to fire through arcs of 145 degrees-the forward ones from dead ahead aft, and the after ones from dead astern forward. These guns are protected by 5 -inch armor. The ten other 6 -inch guns, five on each broadside, are to be placed amidships on the gun deck-the forward ones firing dead
ahead, while all the other guns on each side will hav arcs of fire of 110 degrees, and will be arranged to house within the side line. These guns will be sepa rated by $21 / 4$-inch splinter bulkheads. The ammunition hoists will be run by electricity, and are to sup ply each 6 -inch gun with three complete rounds every minute. The 14 -pounders will be mounted on th gun deck and up in the superstructure, three forward and two aft of the 6 -inch battery on each side, and four on each broadside between the 6 -inch guns up in the superstructure. The 3 -pounders are to be mounted on the superstructure deck and on the bridges, while most of the 1-pounders are to fill the military tops. Each 14 -pounder is to be supplied six rounds a minute, while the 3 -pounders are to have ten
The firing stations for the torpedoes will be sheltered from the reach of 6 -pounders and lighter pieces, and are to be located above the torpedo tubes The conning-tower, located at the fore end of the superstructure, will be of steel 9 inches thick, and the signal tower located at the after end of the superstruc ture, will be of steel 5 inches thick. The pilot house will be of bronze. All maga zines are to be carefully insulated, and certain of them are to be chilled by the refrigerating plant. All are also to be easily susceptible of instant flooding.
The ships will be driven by twin triple expansion engines of 23,000 horse power which are calculated to give them a speed of 22 knots an hour. As the dis placement is 13,680 tons, these vessels in respect of their motive power afford a interesting comparison with the British armored cruisers of the "King Alfred" class, which on a displacement of 14,100 tons are to make 23 knots an hour with 30,000 horse power. The boiler rooms of the "California" will contain 30 water-tube boilers placed in 8 water-tight compartments.
The ships will carry ammunition enough to put up a good long fight; 500 rounds being allowed the 8 -inch guns, 2,800 rounds for the 6 -inch guns, 4,500 rounds for the 14 -pounders, 6,000 rounds for the 3 -pounders, and a pretty liberal supply for the rest. Provision is to be made for closing many of the water-tight doors auto matically, i. e., from a single controlling station, and every care has been taken to localize the effects of damage by shell-fire or torpedo
In closing, we would draw attention to the protec tion afforded to the broadside battery, which, com pared with separate casemate protection, as used on the English cruisers of the "Drake" class, is we think superior. The casemate carries 6 inches of armor on the front and 2 inches at the rear. The stretches of the ship's side between casemates are unarmored, and an enemy's shells might pass between casemates, and, bursting on the 2 -inch armor of the opposite casemates, wreck them. No such damage could be suffered by the off-side battery of the "Pennsylvania," as all 5 -inch and most 6 -inch shells would be burst on the unbroken front wall of 5 -inch armor

Displacement, 13,680 tons. Speed, 22 knots. Bunker Capacity, 2,000 tons. Armors Belt, 6 imehes to $8 \% /$ inches; turrets, $63 / 6$ inches to 6 inches; barbettes, 6 inches; deck, $12 / 8$ inch to 4 inches.
 Armament : Four 8-inch, 45-caliber B. L.; fourteen 8 -inch, 50 -aliber R. F.; eighteen 8-inch R. F.; twelve 3 -pounder
guns. Torpedo Tubes, 2. Complement, 822 .
ARMORED CRUISER "CALIFORNIA."

THE SEMI-ARMORED CRUISERS OF THE " ST. LOUIS"

 CLASSThe three vessels of the "St. Louis" class, although they carry side armor, are down on the naval lists as protected cruisers. This is due, doubtless, to the fact that the authorization by Congress, March 2, 1901, calls for protected cruisers. As a matter of fact, the Bureau of Construction, while keeping within the limits of displacement and cost imposed by the act, has been able to add to the protective deck, which marks them as protected cruisers, a partial waterline belt and a broad belt of armor amidships reaching to the main deck. The armored cruiser carries a complete waterline belt, reaching from stem to stern. Hence the "St. Louis" class occupy a position midway between the armored and protected class, and they may be distinguished, very conveniently, as semi-armored vessels.
They compare, in size and efficiency with the "Monmouth" class of the British navy, in which the belt is carried up to the bow, but terminates at the after case mates, the complete wall of 4 -inch armor amidships in the "St. Louis" compen sating for the unprotected waterline at the bow.
The main deck of the "St. Louis" is supplemented amidships with a covered superstructure, within which are located four 6 -inch rapid-fire guns and six 14 pounder rapid-fire guns; outside the superstructure are two more 6 -inch rapid-fire guns, located on the center line, one forward and the other aft. Located on the gun deck is the greater portion of the battery, consisting of eight 6 -inch rapid-fire guns, twelve

14 -pounder rapid-fire guns, and four 1-pounder rapidfire guns. Sixteen rapid-fire guns are stationed on the superstructure deck and bridges and the remainder of the battery is located in the fighting tops of the two military masts. Additional platforms are built

Gun and Armor Plan; "St. Louis" Semi-Armortd Cruiser Class. "St. Louis," "Charleston" and "Milwaukie."
dam, 30 inches wide and 41 inches above the normal load waterline, extends throughout the length of the vessel. In the construction and equipment of the "St. Louis" class, as small a quantity as possible of wood is to be used, and wherever it is used it will be electric fire-proofed. Each vessel of this class is fitted to accommodate a flag officer and staff in conjunction with the regular complement. In commission the number of officers will be 39 and the crew will number 525 men. The waterline belt, 4 inches in thickness, extends in the wake of the engines and boilers and magazines for over one-third of the vessel's length, and reaches from several feet below to about 3 feet above the normal waterline. Side armor of the same thickness is carried up amidships to the main deck and extends between and includes the forward and after 6 -inch guns on the gun-deck. The 6 -inch guns at the four corners of the superstructure are also protected by 4 -inch armor
While we greatly admire these vessels, we must express a regret that the waterline armor was not carried up to the bow, even if some compromise had been necessary in the matter of speed or armament. This is an age of armored cruisers, and it is regret table that these vessels should fall short of the re quirements for want of the 120 feet of 2 to 3 -inch armor necessary to complete the belt to the stem. It must be admitted that the new ships, although they are not quite in the class of the armored cruisers, are nevertheless more than a match in defensive qualities, at least, for any protected cruiser afloat

Protected Cruisers.

the sheathed semi-protected cruisers of the

 "DENVER" CLASS.An Act of Congress, approved March 3, 1899, had among its provisions one for six protected cruisers "to have the highest speed compatible with good cruis. ing qualities and great radius of action, to carry the most powerful armament suited to vessels of their class." These vessels are now being constructed according to modified designs, which include the following general dimensions and particulars: length, 292 feet; breadth, 44 feet; displacement of 3,200 tons on a mean draft of 15 feet 9 inches. The ships' bottoms will be sheathed with wood and coppered, to suit them for service in the tropics. With 4,700 indicated horse power, they are to have a speed of $161 / 2$ knots. On their mean draft, as just stated, they are to carry 467 tons of coal, the maximum bunker capacity being 700 tons. They will be armed with a main battery of ten 50 -caliber, 5 -inch, rapidfire guns; eight 6 -pounders; two 1 . pounders, four Colt automatics, and one 3 -inch wheel gun. The protective deck, if such it can be called, is only $1 / 2$ inch thick, increasing to 1 inch on the slopes toward the ends and 2 inches on the slopes abreast of the machinery spaces. It is probable that no vessels in our navy have provoked more adverse comment than these, chiefly on the ground that in an age when naval construction is running to armored cruisers, these vessels have been produced with a protection which is even less than that of the average protected cruiser. The speed of $161 / 2$ knots also is far too low for an age when armored cruisers are being built by the dozen which have speeds of from 21 to 23 knots an hour; and this journal did of from to not hesitate to pronounce the design unsatisfactory at the time they were made public. The late Chief Constructor of the Navy subsequently explained, in an article before the Society of Naval Architects, that in designing these ships the Bureau had been influenced by the comparative failure of the hgh-powered "Raleigh" and "Cincinnati" to secure the speed of 19 knots for which they were designed, and that in these ships the coal supply is limited and the coal consumption so great as to make it a serious question in making passages between distant ports. He stated that in the new designs a liberal allowance had been made for all the principal weights; that careful consideration had been given to the strength of the vessels, the scantlings having been made heavier; that the en-gine-room weights per indicated horse power had been made 10 per cent heavier than in the case of the "Raleigh;" that the large coal supply of 700 tons had been provided, giving them at a speed of 10 knots an hour a cruising radius of 7,000 knots without recoaling, which would cover a continuous trip from San Francisco to Manila. It was also pointed out by the Chief Constructor that as these vessels were intended

Displacement, 9500 tons. Speed, 22 knots. Bunker Capacity, 1,500 tons. Armor: Belt, 4 inches; topsides, 4 inches; deck, flat, 2 inches; slopes, 3 inches. Armament : Fourteen 6-inch R. F.; acement, 9,500 tons. Speed, 22 knots. Bunker Capacity, 1,500 tons. Armor : Belt, 4 inches; topsides, 4 inches; deck, flat, 2 inches; slopes, 3 inches. Armament : Fourteen 6 -inch
eighteen 3-inch R. F.; twelve 3-pounder semi-automatic.
four 1-pounder automatic; two
for long voyages and foreign service, liberal berthing accommodation had been made for the crew and more spacious staterooms for the officers. It was further shown that there was no open waist amidships, as in the "Raleigh," the upper deck being carried flush throughout the vessel, and thus giving more deck room and a higher freeboard; and, lastly, that, though the waterline protection is exceedingly light, consisting merely of an inner sloping deck 1 and 2 inches in thickness, considerable protection is afforded by a cofferdam 27 inches in width by 4 feet in depth,
poorly protected to stand up and fight a modern cruiser with any great likelihood of success. What, for instance, would happen to the $1 / 2$-inch protective (sic) deck if high-explosive shells, even of small caliber, were bursting above it?

Submarine Torpedo Boats.

the holland submarine torpedo boat class.

The United States government has now no less than eight submarine boats constructed or under con-
mitted the old fault of claiming too much, and there will come, if there has not already begun, a protest on the part of practical naval men against the impossible qualities which have been ascribed to what is, at best, an untried device. The method of attack of the submarine is outlined somewhat as follows: The little craft will steam to within striking distance of a battleship, and before her conning tower can be detected, will sink beneath the surface, approaching. still unsuspected, until within view of the vessel's unprotected hull. She will then discharge her torpedo

Displacement, 8200 tons. Speed, $161 / \frac{1}{2}$ knots. Bunker Capacity, 7ω tons. Armor : Deck, $1 / \sqrt{2}$ inch on flat, 1 inch to 2 inches on slopes. Armament : Ten 5-inch R. F.; eight 6-pounders; two acity, 7ω tons. Armor: Deck, $1 / 3$ inch on flat, 1 inch to 2 inches 0
1-pounders four Colts; one 3 -inch field gun. Complement, 293.

SEMI-PROTECTED CRUISER "DENVER." ALSO "CLEVELAND," "CHATTANOOGA," "DES MOINES," "GALVESTON," AND "TACOMA."

filled with waterproof corn-pith cellulose; while back of the cofferdam, in the wake of the engines and boilers, will be coal bunkers presenting a horizontal protection of from 8 to 10 feet of coal when the bunkers are full
We have no doubt whatever that the prediction of the late Chief Constructor that the vessels will be exceedingly comfortable and will become, on that account, popular with officers and crew, will be fulfilled, at least in peace times; and no doubt the vessels will find a useful sphereof work in representing this government at foreign sta tions. We can not help asking the question, however, as to what would be th would be th fate of one o these slow,
poorly-protected vessels should she fall in with an armored, or even a. pro even a.pro tected, cruiser of 20 knot speed or over that was capable, of overhauling $h e r$ and overmatching her with the power of her arma. ment. The type is one that is too slow to run away and too
struction. These are of the Holland type, which has been adopted by our own and by the British navy. In the absence of any experience with the submarine under the hard conditions of actual warfare, it is difficult to assign to this novel craft its proper value as a fighting unit of the navy. Just now, its value varies from nothing to everything, according to the conservative judgment or over-san guine temperament of the critic. The friends and promoters of the submarine have undoubtedly com-
and stealing away under water, will come to the surface beyond range of the enemy's guns. All this is picturesque and, if practicable, would certainly be aweinspiring. There is one difficulty, however, which would render an exploit of this kind exceedingly haiardous, and that is the impossibility of seeing unde: water with sufficient clearness for maneuvering. When the boat is submerged the navigator can see but dimly, if at all, and his course, as laid, is'subject to errors in both a vertical and a horizontal plane. The chief value of the submarine will lie in its moral effect in keeping the enemy continuously on the move, particularly should he be engaged in blockading a harborin which a few submarines were known to exist.
The first of our torpedo boats, the "Holland," is 53 'eet 11 inches loner 10 feet 3 inchc: diameter and ${ }^{-}$! tons displacement, andis driven by a 50 horse power engine. She carries one torpedo tube and one dynamite gun asher armament. The six ves sels author
ized June 7, 1900, are 63 feet 4 inches in length, 11 feet 9 inches in diameter and have a displacement, submerged, of 120 tons. When on the surface, they are driven by a single-screw, four-cylinder, Otto gasoline engine of 160 horse power. They are provided with a generator of 70 horse power, which may be either driven by the gasoline engine for charging the batteries, or, when the boat is submerged, the generator can be thrown onto the batteries and used as a motor for driving the propeller.
These six submarines are built with a double bottom and with three watertight compartments. In the forward compartment are the gasoline tank, the expulsion tube, and the air flasks for the dis charge of the torpedoes The amidship compartment contains the main ballast tanks, which are located in the double bottom, and above them are the storage batteries, the torpedoes, and the air flasks in which fresh air for the crew is stored at 2,000 pounds pressure. In the third compartment at the stern are the gasoline engine, the motor, the clutches and the steer ing gear. Submersion is achieved by trim ming tanks assisted by a pair of horizontal div ing rudders at the stern. The vessel is controlled from a conning tower protected with four inches of ar mor. Considerable experience has been gained with the "Holland," which has served as a school of instruction in which crews and officers are enabled to familiarize themselves with this type of craft. The most interesting experiment thus far was the recent sinking of one of the "Hollands" to the bottom of Peconic Bay, where she remained for fifteen hours without coming to the surface. The officers and crew experienced no inconvenience whatever from vitiated at mosphere. Whether the same immunity would be realized were the batteries and motor power in operation is, of course, an open question which could only be solved by an actual trial.

Torpedo-Boats and Destroyers. TORPEDO-BOAT "FARRAGUT."

In the matter of torpedo-boats and torpedo-boat destroyers the United States navy has been content to pursue a conservative course, rather than rush into the wholesale construction of these craft with that precipitancy which has char acterized some European navies. Up to the year 1890 we did not have a single tor-pedo-boat in commission, and at the present time the present time ty have of - these ty-five of these little vessels, all told, on our naval list; whereas there are some navies which number them by the hundred. The value of the tor-pedo-boat is even to-day an unsen tled question, and the complete loss of the destroyers "Cobra" and "Vi-
trial a speed of 30.13 knots per hour. The bunkers have a capacity of 95 tons. The armament consists of two long 18 -inch Whitehead torpedo tubes and four 6 -pounder rapid-fire guns. She has a complement of 66 officers and men.
Of the total thirty-five torpedo-boats in our navy twenty-three have been commissioned or completed since the close of the Spanish war.

TORPEDOBOAT DESTROYER "PERRY."

The torpedo-boat destroyer owes its existence to the theoretical prowess of the torpedo-boat. The torpedoboat was one of those devices which periodically figure in the scare-head lines of the daily press as "annihilators," and the torpedo-boat destroyer is the annihilator of the annihilator. As soon as a few of the early tor-pedo-boats were built and began to maneuver with the fleets, it was found that they were altogether unseaworthy, at least so far as maintaining their speed in a jump of a sea was concerned. Hence, the idea of the torpedo-boat de-stroyer-a larger edition of the torpedo-boat, armed with heavier guns, and, by virtue of her greater speed and weight, able to run down the torpedo-boat and sink her. As the tendency in the construction of torpedo

Length, 245 teet. Rreadih, 23 feet $71 / 4$ inches. Draft, 6 feet 6 inches. Displacement, 420 tons. Contract speed, 29 knots. Bunke
Capacity, 139 tons. Armament : Two $20 n g 18$-inch Whitehead torpedo tubes; two 3 -inch R. F. guns; five 6 -pounders. Complement, 73 . Capacity, 139 tons. Armament : Two 2ong 18-inch Whitehead torpedo tubes; two 3-inch R. F. guns; five 6-pounders. Complement, 73 TORPEDO-BOAT DESTROYER "PERRY"-"BAINBRIDGE" CLASS OF SIXTEEN VESSELS.

from the "Gwin," of 46 tons and 21 knots speed, to the "Stringham," of 340 tons and 30 knots speed, and the "Bailey," "Goldsborough" and "Farragut," of 247 to 280 tons displacement and 30 knots speed. The last three craft were originally designed as torpedo-boat destroyers; but our Naval Constructors reached the conclusion that the destroyer, to be fully equal to its work, should be a larger and more powerful vessel, and consequently when the sixteen torpedo-boat destroyers of the "Bainbridge" type were designed the four vessels named above were relegated to the tor-pedo-boat class. As torpedo-boats they will be the largest in the world; indeed, they will exceed in size many of the destroyers in other navies. The "Farragut," which is herewith shown after her launch from the Union Iron Works, San Francisco, is typical of the larger torpedo-boats. She is 213 feet in length, 20 feet $73 / 4$ inches in beam, and has a mean draft of 6 feet, at which draft she displaces 279 tons. She is driven by twin-screw, vertical, triple-expansion engines of 5,600 horse power, and she has made on
craft, whether of the podo-boat or destroyer type has always been toward torpedo-boat or destroyer type, has always been toward ncrease in size, our Naval Constre the sixteen torpedo destroyers, authorized May 4, 1898, very wisely made them considerably larger than the destroyers which were being built for foreign navies. We present an illustration of the "Perry," built by the Union Iron Works, at San Francisco, which was taken when she was making one of her trial runs at full speed. The cylinders of the "Perry" are $201 / 2,32$, 38 , and 38 -inch diameter by 22 -inch stroke. At 327 revolutions the horse power is about 8,000 . The steam at the boilers is at 300 and at the engines 250 pounds pressure. There are four Thornycroft watertube boilers, two forward of the engines and two aft.
Nine of the destroyers are of 420 tons displacement and are designed for speeds of 28 and 29 knots with 8,000 indicated horse power. They are known as the "Bainbridge," "Barry," "Chauncey," "Dale," "Decatur," "Paul Jones," "Perry," "Preble," and "Stewart," being named after heroes whose names are associated with the most brilliant episodes of our naval history. Each destroyer carries on the main deck two torpedo tubes for the discharge of the 18 -inch Whitehead torpedo. The armament consists of two 12 -pounder rapidfire guns carried, one forward and one aft, above the conning towers and protected by shields. There are also five 6pounders carried in broadside on the main deck. These v esseck. have a length of 245 feet, a beam of 23 feet $71 / 4$ inches, and a draught of 6 feet

are in greater demand than ever before.
In 1898, The sale of the Reming ton was 25 per cent. greater than in any previous year of its history.
In 1899. Remington sales exceeded those of the previous year by an evan greater percentage.
In 1900, More Remingtons were again sold than ever before in any year of its history
In 1901. More Remingtons have been sold in eleven months than in any entire year of its former history.

The annual sale of the Remingron has always
been greater than that of any other typewriter-
 over as
machine.
WYCKOFF, SEAMANS \& BENEDICT,
new york.

$\$ 80$ in 6 days

is what O. W. Clement, of Colon, Mich., recently received

SELLING THE

Turner"LittleWonder"Lamp
This is not an extraordinary experience at all to anyone acquainted with the remarkable merits and easily demonstratable selling qualities of this Lamp. It is what many of our other agents are doing, and some, more than that. After

500,000 GASOLINE LAMPS

were sold last season, Many more will be sold this season. Are you not ready to pocket some of the profits ? Big profits. The "LITTLE WONDER" LAMP is the latest invention of the greatest inventor of gasoline lamps. Generates hydrocarbon gas from gasoline (wholly different from gasoline lamps). Possesses under generator pressure overcoming the hitherto impossible obstacle of combining volume of light with non-clogging feature. Used with or without glass. 500 candle power arc light costs $\frac{1}{8}$ cent per hour. This Lamp can be adapted to all interior lighting purposes. ABSOLUTELY UNAPPROACHABLE. Producing the BRIGHTEST KNOWN LIGHT, even more brilliant than electricity. There is no other lamp or light comparable with it, both in intrinsic value and selling qualities.

tion. We agree to make good by repair or replacement by our reputa:
tion. We agree to make good by repair or replacement at our factory within one year any part of
this lamp which is proven dffective in material or workmanship. The 6% Litte
 tasted nearly every lamp now in the market. It is pronounced a marvel by health and insurance
authorities. We unhesitatingly affirm that the 66 Litle W onder $\%$ is the superior of any other lT SELIS ITSELF
IT prised at the steady, brilliant after darke and it positively sellinaition which his ilght will give. Everyone that can be seen to be smokeless and odorless, and very handy: and when the perrile are told what it costs to operate it and earnof our
absolute guarantee. together with its absolute safety, sales can be made at once on the spot. WE WANT RESPONSIBLE AGENTS towhrm we have a proposition to make that will affor other manner. We want live men and are willing to pay well for them. We know that we have a wonderful invention and are willing to back it with our guarantee and the e enutation of our
house If you arean enterprising man, why be content in vour present position when the opportunity house If you arean enterprising man, why be cotitent in vour present poeition when the opportunity
is yours to double your present incom with the largest concern in our line in the world ? is yours to double your present income with the largest concern in our line in the world ?
REMEMBER We appoint but one agent in a place. OthHrs are making hundredsof dollars a month.
it

THE TURNER BRASS WORKS

82 E. KINZIE STREET
CHIGAGO, ILL.

TABLE OF VESSELS COMMISSIONED, COMPLETED, BUILDING, OR AUTHORIZED SINCE THE SPANISH WAR - battleships and armored cruisers.

Name.

6 inches. They are capable of carrying 139 tons of coal closely stowed in their bunkers, and the complement consists of four officers and sixty men One excellent feature, which will give them consider able advantage over some of the latest boats that have been constructed for foreign navies, is that, in addition to their relatively large size, they are provided with a long forecastle deck, which gives them an extreme free board forward of 14 feet, the freeboard amidships be-
ing about 9 feet. . This will considerably improve their speed in steaming to windward in heavy weather Three of these vessels have been constructed by Neafie \& Levy, Philadelphia; two by William R. Trigg \& Company, Richmond, Va.; three, as mentioned, by the Union Iron Works, of San Francisco; and one by the Gas Engine and Power Company, Morris Heights, N. Y The "Hopkins" and the "Hull," which are being built by the Harlan \& Hollingsworth Company, Wil

mington, Del., are somewhat smaller vessels. They have about the same length, a foot more beam, and 6 inches less draught with a displacement of 408 tons. They were designed to achieve 29 knots with 7,200 in dicated horse power, and the bunker capacity will be 150 tons, the armament and the complement of officers and crew being the same as for the "Bainbridge." The Lawrence" and the "Macdonough," which are being built by the Fore River Engine Company, Weymouth Mass., are the smallest vessels of the fleet. They are of 400 tons displacement, and they were designed to achieve a speed of 30 knots with 8,400 indicated horse power. The coal capacity is less, namely, 115 tons particulars of the armament and the complement are the same as for the other vessels. The largest of the fleet are the "Truxton," "Whipple," and "Worden," building by the Maryland Steel Company, at Sparrows Point, Md. They are 248 feet in length, 23 feet 3 inches beam, and on a draught of 6 feet they have isplacement of 433 tons. They have the large bunke capacity of 232 tons-a very valuable feature-and they are to make a speed of 30 knots with a develop ment of 8,300 horse power
These destroyers cannot fail to produce a favorable impression. Their size, roominess, coal capacity, and powerful armament, and, above all, their good sea going qualities and high speed, will place them in the very front rank of this type of vessel

OUR RELATIVE STANDING AMONG THE NAVAL POWERS.

In the accompanying table it will be observed we have placed the United States navy in the fourth position in rank, with England first, France second and Russia third. At first glance, when comparing the navies by the total number of ships they possess, it would seem as though Germany, with her total of 77, should take precedence over the United States with 62. It must be borne in mind, however, that the truest test of naval strength lies in a comparison of the total displacement and a consideration of the distribution of that displacement among the various types of warships which it represents. Judged by these two tests we hold a remarkable lead over Germany. Thus the 77 German ships represent a total displacement of 395,858 tons, whereas the 62 ships of the United States Navy total up 474,179 tons, an excess of 78,321 tons. The fighting strength of a navy lies in its line of battle; that is in the first-class battleships and armored cruisers that can match armor with armor, heavy gun with heavy gun. Here our superiority is overwhelming, for we can put in line 28 armored ships of 339,444 tons total displacement against Germany's 20 first-class armored ships of 215 ,254 tons total. Not only so, but ship for ship our 15, 000 -ton "Georgias" entirely outclass the 12,000 -ton German "Wittelsbachs," and our 14,000-ton armored cruis ers of the "Pennsylvania" class have an equal superiority to the 9,000 -ton "Prinz Heinrich" class.

COMPARATIVE TABLE OF OUR OWN AND FOREIGN navies.
Total Number of Ships Built or Building as per Brassey's

FAIRBANKS'

and Appliances.

Pamphlet No. 327, "CEMENT TESTING," mailed upon Application.
THEFANRBANKS GONDANY 31 I Eroadway,

H. \& R. Automatic Double Action Revolver with Knife Attachment.

This arm with knife attachment was especially designed for export trade. The knife is made of fine steel, well tempered, and forms practically
a double weapon.

H. \& R. Hammerless Revolver.
An absolutely safe arm. Imposible to discharge accidentally. 32 and 38 Calibers. Has independent cylin 38 Calibe
der stop.
H. \& R. Automatic Double Action Revolver.

The most popular medium priced revolver on the market. Barrel, cylinder and all working parts of the quality of steel best adapted to their particular uses. 32 and 38 Calibers.

HARRIIGGON \& RICHARDSON ARMS (O.,
Dept. "S," Worcester, Mass., U. S. A.
it particutar us
ting

Makers of H. \& R. Single Guns.

Yor multiplication addition ${ }^{\text {twice es rapid as the most expert mental }}$ In hundreds of Railroad and Insurance offices it is saving the
salary of several clerks for each Comptometer in service, and salary of several clerks for each Comptometer in service, and
accounts are being kept which it would not pay to keep if the computation had to be done mentally.
Used by Accountants and Engineers in all lines of business. In the United States Navy Department over 85 Comptometers
are used on Engineering Computation.
Nearly one thousand manufacturing and commercial firm: after buying one Comptometer have ordered a second one, an...
scores have purchased and use in their accounting rooms froin Io to 25 each. It insures accuracy. No lever to operate; simply touching
the keysdoes it all. Simple, light, compact and durable. Many thousands in use.
Write for full description and siaty days' trial offer.
Felt \& Tarrant Mfg. Co., 52 to 56 Illinois Street, Chicago.

On Ian!

 On Sen! Wherever you may beevery one is praising
The Wisconsin Graphite Products

 Especially recom for rop Rust
Wisconsin Graphite Lubricant $\begin{gathered}\text { obviates friction. } \\ \text { mendececially } \\ \text { recom. } \\ \text { red }\end{gathered}$ Wisconsin Graphite Pipe Joint Paste-a foe to oorrosion-a Senat today for Free Samples,
and Bookete -1

Address Dept. \mathbf{S}.
Wisconsin Graphite Company, NORTM SIDE, PITTSBURG; PA.

Now is the time to subscribe to the SCIENTIFIC AMERICAN for the year 1902 3 Months Trial, 50 cents

Brief Notes Concerning Patents.
John H: Lincoln, the inver John H: Lincoln, the inventor of the
railway hay fork which bears his name died on November 14 at Utica, N. Y where he was tisiting his daughter.

According to a recent bulletin of the Census Office; there was one patent taken out in Connecticut in 1900 for each 100 persons. In 1890 the figures were one for each 796 persons
Thé Sharôn Steel Cômpany has been sued at Pittsburg for infringement. The suit is brought by J. J. Pearson \& Com pany, of Maine, and it involves the man ufacture of cement-coated nails, the ob ject of which is to increase the tenacity of the driyen nail and to preserve the substance into which the nail is driven.
C. E. Havens, foreman of the Balti more and Ohio shops at Zanesville, Ohio, has invented an adjustable side bearing to be used on railway cars, and by the use of this improvement a car has a greater clearance in rounding curves and less friction between the bolsters. It is therefore possible to place from six to eight more cars on a train. The value of this device has been demonstrated by practical tests.
Oscar Hedstrom, who invented a motor bicycle, recently built a machine after hị own design at the works of the Wor cester Cycle Manufacturing Company at Middletown, Conn., of which city Hed strom is a resident, and has shipped the machine to London, where it will be placed on exhibition. The machine was built for speed, and the inventor had been making arrangements to race it with a locomotive, but this interesting event will be interfered with by the builder's determination to send the whee abroad.

A dispatch from St. Thomas, D. W. I., reports that an explosion of refriger ating chemicals took place on November 21 on the Royal mail steamer "Para" which did so much damage to the steamer that she was unable to proceed. The boat had just been equipped with the Lawton fruit-preserving process to en able her to compete in the fruit-carrying trade, and the inventor was making the trip personally to observe the working of the installation. He and three of his workmen were killed by the explosion, and several others were injured.
N. S. Amstutz, of Cleveland, the in ventor of a process for sending pictures over wires to distant points, has recently brought out an improved process for the making of half-tone pictures for newspaper use. Its chief value is the rapidity with which a picture of this character can be made, although it has another merit, and that is that the whites are pure and solid and not broken up by dots, as is generally the case. This makes the picture crisp and sparkling because of the sharp contrasts secured in the print.
Herbert Hoyle, an Englishman, who is the inventor of a process for making artificial silk from China grass, has been brought to this country by some cap italists of Boston and vicinity with the object of exploiting his invention, and a mill will soon be in operation at Fall River or Boston. One of the advantage ficial silk can be spun on ordinary cotton and woolen machines. There are a few factories in Europe for the utilization of China grass, but this is the firs venture of this kind in the United States

A patent has recently been filed in th Patent Office for a device which applies power to an automobile motor only when the driver's seat is occupied. The instan the operator rises from his seat or is thrown therefrom, the cushion is raised by means of a spring, and this carries with it a plunger which shuts off the power, and the vehicle comes to a standstill. This invention will prevent runaway accidents from automobiles. When the application for this patent was filed in the Patent Office it was found that there were twenty-six other application covering like ideas.

A CAR OF ORE RUNS

16.31 per cent. Copper per ton from BLACK HILLS COPPER 00.

The Greatest Copper Mine in the World, the Calumet and Hecla of Michigan, runs 3.05 per cent. copper, with profits paid, $\$ 75,850,000$.

Prof. Lawson, in his report after examining our property, says: "The average per cent. of this body of ore is above the principal producing copper mines of the World." (See page 13 of our prospectus.)

Work is going forward on this property night and day. To install more machinery and rapidly open up the immense ore reserves, we offer for a short time, shares at 25 cents each, par value one dollar, full paid, and orever non-assessable

This is not a speculation, but a legitimate investment in an enterprise officered by conservative business men. Remember, copper mines are the safest investments, and largest dividend earners. \$15, \$25, \$100 or $\$ 500$ invested ${ }^{\text {now }}$ promises an income for life.

Results of work on our in claims are so favorable, we have just bought 16 claims adjoining. By this consolidation we now own 510 acres.

Handsome Illustrated Prospectus Free.

BLACK HILLS COPPER COMPANY,
 121 Territorial Street, BENTON HARBOR, MICH

REFERENCES:

FARMERS AND MERCHANTS BANK, Benton Harbor
CITIZENS STATE BANK, Benton Harbor.
benton harbor state bank, Benton Harbor.

 and instruction.
NINE STYLES, from $\$ 10$ to $\$ 100$. Catalogues at all dealers.
NATIONAL PHONOGRAPH COMPANY

-

WIRE ROPE ELECTRICAL WIRES OF ALL KINDS
American Steel \& Wire Co.

Automobile News.

It is intended to supplant native carriers for the transport of goods in the Congo Free State by motor cars. Sev eral experiments have been carried out in Brussels with heavy steam lorrie which would prove suitable to the coun try. Each vehicle was loaded with 36 hundredweight of iron and tested over rough country, typical as far as possible of that indigenous to the African state The trials were eminently satisfactory Each lorry will displace 65 native car riers, and the inauguration of such service will both decrease the cost of and expedite the transit of goods into the interior.
A dispatch from Odessa to The Times says that Prince Khilkoff, Russian Min ister of Ways and Communications, and a party have just made a successful auto mobile trip from Vladikavkaz, Caucasia to Tiflis (nearly 100 miles). The jour ney was the first of its kind in Russia Prince Khilkoff is known to have a high pinion of the utility of the automobile and, says the correspondent, he perhap contemplates introducing it on the im perial post roads. In view of the inade quacy of the railway facilities between many important towns and the genera flatness of European Russia, the automo bile, the dispatch says, should prove a invaluable means of communication.

It is proposed to inaugurate a system of automobile transportation at Brussels, and an application has been made to the authorities for a concession. A series of large delivery wagons will be run ove an extensive route between the city and suburbs and insure the rapid delivery of packages and merchandise. The main station will be situated at the Old Grain Market, and a number of other stations will be placed at the principal centers of traffic. The projected route is to pass by the three main railroad stations of the city The price of transport will be fixed according to weight, with a min mum of 5 eents and a maxim mis the limi of weight being 220 pounds. The wagon will run throughout the day (excep Sundays and holidays) beginning at $7: 30$ A. M.

The Anniversary Run is the annual promenade which is made by the English chauffeurs to celebrate the abolition of the famous Red Flag Act, by which auto mobiles in England, up to November 16 1896, could go no faster than a walk and had to be preceded by a man with a bell and a red fiag. This was happily abolished by the Light Locomotives Act on that date. Last year the promenade was made from London to Southsea, and this year the chauffeurs will run to the same destination, passing by Putney Bridge, Richmond Park, Winchester, where lunch will be taken, then Waltham and Southsea. The run will be preceded by the annual dinner of the English Club which is open to all the members, these at present numbering 1,038 . At a subsequent meeting the club is to discuss the question of organizing a special contest for electric automobiles.

The programme for the "Grande Semaine" at Nice, which is one of the great events of the year, has lately been published. It will commence on the 6th of April next with a parade of flowerdecorated automobiles. On the 8th are two races, the Nice-Aix-Salon-Nice, a speed race of 280 miles, and the Nice-Dra-guignan-Nice touring race of 62 miles. On the 9 th and 10 th will be held an automobile show at Nice, as well as three of the principal events-the mile race and the kilometer (0.6 mile) dash for the Henri de Rothschild Cup, on the Promenade des Anglais. Then follows the famous hill-climb from Nice to La Turbie, a distance of 9.1 miles. The week finishes with a concourse of the most handsome automobiles, which will be held at Monte Carlo. Engagements are made for the whole series of races, and will be re ceived at the Nice Automobile Club up to the 20th of March, inclusive.

December I4, 1901
 Withont Stam Power shonld
nse oor Foot and Hand powe
usachinery. Send for Cataloga
B-Lathes, etc.
seneca Falls MFg. Co

WTividw waw

Cold weather has no terrors for
DR. DEIMEL UNDERWEAR

No Danger of Colds.
No Danger of Rheumatism or La Grippe.
No Danger of Anything but Health and Comfort.

free booklet
and samples
OF the cloth
by addressing

The Deimel Linen-Mesh Svstem Co. 491 Broadway, New York SAN Francisco, Cal.,.II Montgomery St.
WASHNGTON, D.C., 78 Fifteenth St., N.W.
MONTREAL, CAN., 2202 St. Catherine St. WASHINGTON, D.C., 28 Fifte enth St., N.
MONTREAL. CAN.,220 St. Catherine St.
I,ONDON, E. C., Eng., $10-12$ Bread St.

Automobile Engine nain

*WE MAKE TMEM

 SEAMLESS STEEL TUBES, SEAMLESS STEEL, BOILER FLANGED BOILER HEADS. If interested in Electric Weledann wowle or have our repree.
THE STANDAR
WELDING CO., Cleveland, 0 .

 catalogue etc., free.
QUEEN $\&$ Co., 1010

 One Hundred Dollars per Month or less When an investment of a very fee dolasi wILL Doubie THE RESUI
 yery hoiesest tropieal friuik ban doonele yout salary.
 OUR PLAN IS PURELY MUTUM Mar conppans is inacoprarate, with live sasest of over A dentuled to confitience, tehuantepec mutual planters' co.

 Bust of McKinley our martyred bresti- dent in old ivory or bronze finish, six irches high, care fully packed. Ex press where in the and any whe for One Dollar Should be found in every home in this country

 FACTORY WASTESThave found ways to utilize many
wastes and unapplied substances, converting
Send for
Wasses into
into profitsi
Product Biank. DR. PETER T. AUSTEN, F. C. S. So Broad SHEMICAL EXPERT,
 Beats atsuyy
dioeviplon.

Buffalo Gasoline Motor Co., 3-9 BRADLEY ST., BUFFALO, N. Y.
VAN WAGENEN DUMP WAGON

 COMSTOCX'S
TWIN CYLINDER AIR PUMP

CHEAPER THAN A CANDLE
 IOO TIMES MORE LIGHT BRILLIANT and HALO GASOLINE GAS LAMPS

 HELMET OLL is a solid oill. bricainin known. Contesins nuo
acid or pitch. and will not
 ing of 50 per cent.
nling a sav-
nlusprated catalogue free

CHARLES H. BESLY \& CO.
Fine Tool Clakers, Dealers and Importers,
$10 \& 12$ N. Canal St., CHICAGO, ILL., U. s. A.

OLYMPIA , (isfilic PACKINGS

C. W. TRAINER MFG. CO.,

One, two and three ply.
Gaskets Made to Any Given Size and Shape from the Sheeting *
Descriptive price fist and
samples sent to all who ask.

C. W. TRAINER MFG. CO., 88 Pearl Street, boston, riass.

Daval and Power of the

Description of every Battleship, Cruiser, Gunboat and Torpedo Boat in the United States Navy up to Spanish War, 1898.

Special Navy Supplement.

$工 \begin{gathered}\text { He outbreak of the War with Spain found the people of the } \\ \text { United States withen }\end{gathered}$ United States without any clear knowledge of the naval and military armaments upon which we had to rely for success on sea and land. The Scientific American undertook to gather subject; to illustrate the ships, their armor and guns, and so subseribe it that every layman might have anint elligent knowle dge of the character and standing of our Navy and the special duties assigned to each part thereof. The popularity of this journal was so great that it attained a circulation of 250,000 .
Colored Cover, Colored Map of Cuba, and the West Indies. Sbly. 90 Jhustrations.
Price, - - - 25 Cents.

Development of the United States Navy since the Spanish War. 1898-1901.
ATHOUGH but three years have passed since the war, we have made much enormous strid s in the development of
our Navy that the fleet of ships built, building, or authorized since 1898 is far larger in size and efficiency than those present at Manila Bay and Santiago. The new Scientific AMERICAN Special, which treats of the Development of the United States Navy since the Spanish War, is issued in response to many urgent requests that we would bring the information contained in the War, Army and Navy Special up to date

Colored Cover. Supplement showing Groups of 84 Vessels
built and building since the Spanish War. 30 Pages. Price, - - 10 Cents. After January 1, 1902, price will be 25 Cents.

Address

MUNN \& CO., Publishers

of the SCIENTIFIC AMERICAN,
361 Broadway, New York.

Military United States

Description of every Gun, Gunmount, Range Finder, Dynamite, Gun Mortar, etc., in the

Army and Coast Defence Supplement.

EXTRAORDINARY popularity of the Navy Supplement, the demand for which was instant and universal, encouraged us
to issue a similar number devoted to the Army and Coast Defence. This Supplement was larger and even more elaborate than the first. So complete and accurate was the work that it received semi-official recognition, and in spite of its popular character, is used widely as a work of reference in the United States Army.
Colored Cover. Supplement showing Battleship "Iowa."

$$
\text { Price, } \quad=\quad-\quad 25 \text { Cents. }
$$

The three numbers together make a complete compendium of infor-

, varia		$\begin{aligned} & 23 \\ & 50 \\ & \hline \end{aligned}$.. 687,755	Impact tool, J. B. Rhodes.
Crate, J. W. Say	688,127			Inkstand, pocket, J. A. Crandall.............. 688,066
Culinary ut	687	Electrical ground plugs, implement for sink-	ntz ….........................6.688,183	Ironing board holder, A. J. Fredricks........ 6887,958
Cultivator, lister, R. E.		ing, W. E. Fisher...i............... 687,982		Jar opener, fruit, Joint fastener, metallic, W. G.
	6888,192			Joint rastener, metalic, Ge \%, Rhynedance. 687,789
Curtain pole ring, F. Perry		Elevator doors, electric latch for, otis \&	Gas generating apparatus, w. J. Faulkner. ${ }^{\text {c }}$ 687,823	Journal box dust guard, F. B. Harrison..... 6887,959
Cyanide vats, etc., apparatus for charging				
m , movable, Shedd \& Sarle		Isgrig \& Fletcher....................688,230	Gas, manufact	Labeling machine, W. E. Pettee............ 6887,900
Damper, furnace time, C. E. Lundbla,..	68		Gas Gate regulator, W . Luc	Ladder, automatic locking extension, S . T . Waggoner
matic, W. A. Kendrick.			Gir	
ntal disk mandrel, C. J. Reyn	688,122		Glass globe or shade, prism, O. A. Mygatt.. 687,848	Lamp, electric, T. A. Smith.................. 6887,943
$\xrightarrow{\text { Pe ental forceps, J. B. Davis... }}$	688,2	Engines, fuel mixing and charge controlling	Glutinous substances, manufacturing,	
	687,987		Gold saver, Flatland \& Lister................ 687,875	
Desk and seat, adjustable school,		Engines, sparking mechanism for internal	Grading and ditching machine, automobile,	Lamp terminal, electric vapor or
Sauder	68	E	der fold	p, vapor,
shipp				ps, apparatus and circuit for operating
e or tool h		Explosive engine, A. Hayes................. 6888,245	Gr	
Die press, rotar	687,9	Extractor.		inc
Dining room	688,2			ack
sh washing	688,116			Lantern for electric or oth
Display card,	6888,		Hame, Hagood \& Roling	
Dol's house,	688,008	Fan, ro	Hame and	
or chec	688,0	mposin	Hammock canopy	
Draft regulator	688	Faucet for beer barrels, inside, w. J. Ken-	Harness shield attachment, W. W. Sellers.. 688,	Latch, sliding door, w. K.
raft regulator, J. H. Pearson..	688,195	nedy \ldots.......................... 687758	Harrow, T. L. Flyn.i................. 688,	Lathe backing off attachment,
wer case, dust and mouse pr Simmons			Harrow, disk, J. C. Talibot.................. 6888,944	
sers for desks, bureaus, etc., device for		Fence wires, tool for attaching intermediate,		Leather coloring machine, R. D. Scoti...... 6888,035
	688,074			Lifting jack,
Drawing or spinning frames, weighting mechanism for, C. R. McGowan..	687,770		Hatch for elevator shafts, H. Karberg...... 687,921 Headlight directing device, automatic, J.	
Dredger and gold saving machine, submarine,				Linotype machine, F. J. Wich $.6888,218$
		Fit	Heat regulating apparatus	Liquefaction of
See Coal or		Fir	Heating and ventilating	Liquid concentrating appara
ill holder, E. P. Jones..			Heating	
st pan and sprinkler, comb		Flour bolt, gyratory, S. T. Green.......... 687,743	He	(Contınuei on page s96)
Hilaire		Flour bot	He	
Edge trimming to			Hook.	
g beater, ba	688	Fluid compressor, F. C. Weber............. 688	Hook and	Now is the time to s
or fruit case, collapsible,	687		Hook and eye, M. L. Stu	
ectric batteries, automatic means for con- serving energy of, Siegel $\&$ Abrahams..		Foundry flask bottom board Frame, A. P. Monnier...	Horseshoe and pad, combined metal, E. A. Wilcox 688,219	LIT
ectric battery, G. d'Infreville...........	68	Fringe applying apparatus, A. S. Horlacher.	Horseshoe, soft tread, W. T. French......... 687,824	
Electric circuits, instrument for measuring the resistance of, E. K. Brown.		Furnaces, metal purifying attachment for blast, Lynn \& Foley........................		
tric		lug		bscription Price, - - \$3 a
Eleetric controlier, ${ }_{\text {Ele }}$ Electric furnace		Gage, w. L. Bird........................... ${ }^{687}$		3 Months Trial, 50 cents
lectric machinery, dynamo, A. Chu	687,99	me table, J. P. Moyer...................... 688,0	Igniting device, self acting, w. Boehm..... 688,056	

 THE VERNON ACADEMY
at Rochester. N. N. \mathbf{W}. occupying, the famous

 "Psychic Phenomen of, SENT FREE
the Twentieth Century

The Looke Adder
 Saves time , Iater, money, and
QUICKLLY PAYS FOR ITSELF
 An Unsolicited Letere C. E. Locss Mre Keneit I Iowa.

 one fill $\underset{\text { Descriptive bookteition PRE. }}{\text { Charges }}$
C. E. Locke Mfg. Co. 25 Walnut St.. Kensett. la.

 Soe upper blank, J. Br
Spoon,
Spon, L. S. Sievert
pington.

Wine glass, A. Brick
Wrench, G. Amborn,
TRADE MARKS

Corsets, Ferlideimer \& Co
Crackers, cookies
Cates.

\qquad

\square

LABELS

"Best Value Brand," for canned sugar corn,

PRINTS.

HINTS TO CORRESPONDENTS. Names and Address must acoompany all letters
no attention will be paid thereto. This is Referen information and not for for fobicications date of paper and page or number of question.

 Mineral.
marked ont or for exami
labeled.
(8472) H. L. asks: 1. Whether or no "cross talk" will be caused by having two o at the central office. A. No. 2. Also will cross talk be caused by one wire above another (Continued on page 398)

DAVIS' PATENT Compression Coupling
 FOR LINE SHAFTING

May be ordered through any Hardware or Machinery Store. Agents wanted in territory not already placed No keys required. Satisfaction guaranteed. Send for
price list and discount. price
The W. P. Davis Machine Co. rochester. n. y., U. S. A.

BURNISHINE
 The Most Marvelous Metal Polish in the World

 Contains no Acids or anything injurious to the Metal or Hands.Produces a w wonderfully briliant luster on Brass, Copper, Tin, Zinc, Silver, Af frubs and the article is handsomely burnished. Wiil not toil the hand or or eave deposits sin cornined. or surface of the metal.
 Half-pint cans, 1 -pint cans, 1 =quart cans, $2=q u a r t$ cans, 1 -gallon cans. Put up in liquid and paste form. J. C. PAUL \& CO.

59 Dearborn Street 3 CHICAGO. ILL.
1898 MODEL Type, Sinch Rapid fire
 and class to that date. Governilient test
The Trustees of the
BROWN SEGMENTAL WIRE-TUBE
soon to be incorporated, offer
Application should be made.to the
Office, TEMPLE COURT,
5 and 7 Beekman St.
NEW YORK CITY, N. Y.,
[Special terms for the next 30 days.]

NOT FOR FARMERS ONLY

The Country Gentleman
The Leading Journal of Agriculture
The ONLY Agricultural NEWSpaper
BUT ALSO

LUTHER TUCKER \& SON \& Albany, N. Y.

For the lazy
Earn More in mort ourn business

THE CONSOLIDATEDSCHOOLS The Institute for Home Study of Engineering, and the Correspondence School of Technology,
$\mathbf{1 5 4 , 1 5 6 , 1 5 8 ~ F i f t h ~ A v e . , ~ N . ~ Y . ~}$

on the poles (not cross armed)?
Cross talk is produced by the
parallel to each other, and the wires running on the same cross arm. 3. I do not understand
how every 'phone attached to how every phone attached to the line in
multiple system will reduce the resistance of the line. A. One wire has a certain resistance between two points. If we add a second wire
like the first we have half the resistance, be cause there are two paths for the electricity, and hence twice as much can pass. 4. Does the corrosion that gathers on the zincs of a tery? A. Yes. 5 . How is polarization guarded having the carbon in the form of a hollow cylinder? A. By the great amount of surface it presents to the liquid. It does not prevent
polarization, it only retards it. 6. Can you tell me where I may obtain directions for would be suitable for rough-testing a 'phone generator and battery? A. In "Experimental Science," price $\$ 4$ by mail. 7. Why is it harder to turn a 'phone generator when the line is grounded or when the 'phone is plugged? A Because no current is generated when the gen erator is short-circuited. 8. Could you give
me instructions for making a home-made blow me instructions for making a home-made blow-
pipe furnace? A. Pile up a few bricks around pipe furnace? A. Pile up a few bricks around
your crucible and work away. See "Ex perimental Science wire from one-half inch to one inch long, lef projecting from any electrical connections, cause a waste of electricity? A. Not un less there is a very high potential, as in the
secondary of an induction coil. 10. What is secondary of an induction coil. 10. What
the best method for splicing small copper wires the best method for splicing small copper wires,
especially No. 36 magnet wire? I have tried splicing it with an alcohol lamp, but found the flame to be too hot? A. By soldering them, of testing the strength of the polarizing mag net of a polarized bell of a telephone? A. By finding what it will lift, or what repulsion will exert on a magnetic needle. 12. Should oi be placed on any of the bearings of a telephon generator? A. Any part of a machion the is rapid motion may be oiled. There no magnetic or electrical advantage or disad vantage one way or the other
(8473) C. C. H. writes: I was inter ested in the question of your correspondent No. 8403, issue of October 26, in regard to th this instance the sense of temperature is n at fault, the temperature of iron in sunligh being higher than the temperature of the sur rounding air, as the following experiment
shows: In the edge of a cast-iron disk, about shows: In the edge of a cast-iron disk, about
an inch thick by six inches broad, I bored an inch thick by six inches broad, I bored a
hole and inserted a thermometer after first filling the hole with water. The disk being stood in the sunlight out of doors, at the end
of a half hour the thermometer registered 100.6 deg . The temperature of the surrounding air, also in the sunlight, found by whirling 59.9 deg. The sky was hazy, or the difference would have been greater. The explanation is as follows: A body radiates heat at a rate nearly proportionate to the excess of its tem
perature above that of the surroundings, pro vided the excess be not too great, so that a
piece of iron when placed in sunlight piece of iron when placed in sunlight will rise
in temperature until the loss of in temperature until the loss of heat radiated
is equal to that received from the sun. If we is equal to that received from the sun. If we
make the part of the iron not exposed to the sun a bad radiator by polishing it, and the part exposed a good absorber by smoking it greater. The reason that the air becomes only slightly heated by the passage of the sun's rays
is that the air is a bad absorber of radiation. in that the air is a bad absorber of radiation. An blackened sheet metal in the bottom of a shal better two) cover of glass, making all as tight as possible and inserting a thermometer day the a cork. In the sunlight on a hot point of water in such a box.
(8474) W. F. B. asks: In lighting my house with incandescent lights from an isolated plant consisting of dynamo coupled to gaso line engine what effect will the variation in the number of lights used have upon th dynamo? In a mill, the motor, which receives current from a transmission line, raises the
stamps 110 times per minute without any per ceptible variation. Jack up all the stamps and the motor will turn the empty camshafts exactly 110 times per minute. The difference between full load and no load does not phase her a particle. An engine would race unless
provided with a very sensitive automatic govprovided with a very sensitive automatic gov
ernor ; and I suppose the motor takes only as ernor; and I suppose the motor takes only as
much current as is required to make that number of revolutions. But if a 50 -light di-rect-coupled dynamo is running and the women
folls folks turn out all the lights in order to enjoy
the the moonlight, what will happen ot from
dynamo? A. If a miller is draw ing water from his pond to run his mill, and he shuts the gate to go to dinner, what happens to his pond? Nothing. Just this will happen to you
dynamo, and for the same reason. Water in the pond with the gate shut has pressure but no motion. Only pressure, electromotive are turned off. There is every preparation for an outflow of electricity, but no current. Turn a switch and the current flows and the lights when the gate is opened.

New Model No. 6. $\$ 50.00$

The ONLY TYPEWRITER that has a LOW PRICE and ELASTIC LIGHT TOUCH with UNIVERSAL KEYBOARD.

The only one with VERTICAL WRITING or PEN RULING, or VISIBLE WRITING and writing in FOUR COLORS.
It is the only one supplied with an attachment for successful
BOOK TYPEWRITING It has many other new and novel features. Agents wanted for the Commercial Visible Typewriter.

ROOMS 318-332,
300 BROADWAY
NEW YORK.

The Fastest Yachis in the World.

builders of steat yachts
"ARROW," 40 knots per hoor. "ELLIDE,", 40.2 miles " PRESTO," 31.0 FEISSEN," 31.6 NORW00D," 30.5
The Mosher Patent Triple and Quadruple
Expansion Engines and We Expansion Engines and Water-tube Boilers.
These boilers have been supplied for no les These boilers have been supplied for no less
than eleven of the torpedo boats of the U. S. Navy, the U. S. Monitor "Florida" and six
torpedo boats for Russian government, besid

CHARLES D. MOSHER, No. I Broadway, N. Y. City

UNION IRON WORKS

Ship Builders

SANFRANCISCO; CAL.

SGIENTIFIG

Published Weekly Since 1845
F has berhalf a century the Scientific American the world on allscientific and technical questions
It contains exactly the kind of intormation about the world's progress which most readers desire,
and this intormation is given in a popular, though
scientitic way. 1t is tar trom beint scientitic way. It is far from beine ary and heavy,
and it is American in tone; more wiely read in
the libraries than any scientitic or mechanical the libraries than any scientitic or mechanica
journal published. All the new discoveries and inventions are yiven, and all the latest develop
ments in every line of human industry. It is
there therefore, of absorbing interest to every reading
and thinking person. 'there are an average of and thinking person. 'There are an average of
articles, 55 short notes, and \&4illustrations in each
issue. Among the departments recentiy added are issue. Among the departments recentiy added are
the PATENT DEPARTMENT, dealing with every the PATENT DEPARTMEN, dealing with every
phase of patents, trade-marks, and copyrights; the
Business and Personal, Want and Exchange Col Business and Personal, Want and Exchange Co
umn, free to subscribers, which brings manutac umn, tree to subscribers, which brings manufac
turer and purchaser into direct correspondence. All questions relating to scientific and technica
matters are answered free in the Notes and Querie mepartment. It also contains, weekly, a fullindex
of Inventions. There is no more appropriate holiof inventions. There is no more appropriate
day gift than an annual subscription to the
$\$ 3.00$ per Annum, $\$ 1.50$ for Six 31.n/hs.
SCIENTIFIC AMERICAN BUILDING EDITION No one who contemplates buildinga house should
fail to subscribe for the Building Edition of the

Subscription to the SUPPLEMENT, one year, $\$ 5$. Combined rates with SCIENTIFIC AMERICAN and
SUPPLEMENT, both to one address, one year $\$ 7$. Both papers for six months trial, $\$ 3.50$.
MUNN \& COMPANY,
Publishers Scientific American

AMERIGAN
Most Popular Scientific Paper SCIENTIFIC AMERICAN, which will after January BuIDING MoNTHLY. No architect or builder from photographs of. houses actually burt.
The houses are well selected and flowr plans are published with each. The literary contents
are notable, "Talks Writh Architects" oeing espe-
cially attractive. Among the Departments are Household Notes,"" Le Lezal Notes," "Book re moent,", "Patents Relating to to Building,", etc. The ouses illustrazed cost from \$\%,000 up. Boun plied and atford an unrivaled cyclopedia of Am-
erican builang. Sample copy mailed for $\%$ cents.

SCIENTIFIC AMERICAN SUPPLEMENT

$$
\text { Published Weekly Established } 1876
$$

This journal is a distinct publication from the and amplify the work of the older paper. It has no advertising pages and the entire space is give news of the day. A year's numbers contain 83 large folio pages equal to over 4,000 ordinary mag
arine pages and contain about 1,300 illustrations Thine pages and contain about 1,300 illustrations ICAN SUPPLEMENT form a library in the selve

361 Broadway, N. Y.

As Others See us

Every letter bears date November, 1901.
D We have received $\begin{gathered}\text { orders from } \\ \text { from all }\end{gathered}$
e have Machine Wecived orders, Defrian all
horld, through this advertisement, consider it the highest class advertising
medium that it item published in this vountry
it reache every elass of people than are
nterested in modern methots. It stands in
such high favor with mechanics that in

 American is sold by all the leading book
stores throughout this and foreign countries, and it is simply astonishing how far
its infuiunce reaches. We desire to state
th that we have meen many that we have paid you
the mone
tising in the Scientific American.
Julian $\begin{gathered}\text { F. Cur } \\ \text { advertisemenisont brought more intelligent and and } \\ \text { New }\end{gathered}$ valuathe inquiries than any other paper.
n Notor Carriage Co., Cleveland,
only publication in which we have adver-
tised continuously. The reason is that re-
sults have been
iams Brothers, Ithaca, N. \mathbf{Y}.
covered by your circulation, and value your
journal as one of the most protitable
mediums for advertising that we have ever
been able to find.
e. Scientific American is unquestionably a
power of great influence in the commercial
world.

William Roche, New
Results have not been exceeded by any other
pse MIf. Co., Elmira, N. Y.
equal to those of any medium and far
advance of many of your competitors.
The A Vilter Mifg. Co., Milwankee, $\underset{\text { proportion }}{\text { Wis. }}$
came from parties who appeared to be in
the market for our goods. We are wel
olidated Engine-Stop Co., Water-

Wisconsin Wheel Works, Racine Junc-
tion, Win.
Much pleased with
th pleased with the results, both in quan-
tity and quality. Will use much larger
ppace.
space.
spo Gane Motor Co., Bnifinalo. N. \mathbf{Y}
trated good share of our sales to the Sci
entific American, as all advertisements are
keyed.
Watson McDaniel Co., Philadelphia, Pa.
Brought many inquiries from a new and valued
ficld, heretofore not reached.
W. F. \& John Barnes Co., Rockiord, III.
Its readers are of the bright, studious, alert and
interesting class and the inquiries mean
ind
interesting class and the inuuriries mean
business and are not from catalogue seekers. Lowell Moldel Works, Lowrell, Mass.
Consider the Scientific A merican to be an
vertising medium of the first class.
Vulcan Irong works Co., Toledo, o.
One of the best advertising mediums we kin One of the best advertising mediums, we know
of Hive tad areat many inquiries men-
tioning the Scientific American. The Warren Co., Chicatoo, III.
advertisement has paid, for itself. One
order from Russia, another from
Guiana, besides many inquiries. Cyphers Inculator Co., Buffililo, N. Y.
No paper on our list yields anarger per cent
of customers from the inquiries sent us.
The readers of the Scientific American mean
The Avery \& Jeens. whens they send for catalogues. Chicago, 111. Inquiries from all over the worlo, as many as
orty-five in one day one one of the very best
mediums for advertising goods in
mechanical line. Savage Arms Co., Utica. N. Y.
Results have been far ahead of expectations
Your paper will sand well at the head o
the list. Advertising all keyed.
 in weeks after avertisements appeared
proving that vorl
tinuous referiodical is kept for con
then A. EdFarton Mify. Co., Shirley, Mass.
Results connure favorahly with those ohtained
from such publications as Munsey's, Me Merrell Mrf. Co., Toledro,
Received great benedt from the small adver Mead Cyyce Co. Chicato, III.
Have kent record of all orders resulting from
inquirise from each paper. On this basis, inquiries from each paper. On this basis
the scientitic American has shown very sat
isfactory results.
 Holden, Philadelphia, pa.
D. I. Holden, Philadelphia, Pa. $\begin{gathered}\text { Some of the biggest contracts } \\ \text { came have ever ha } \\ \text { direct }\end{gathered}$ came direct from the addertisements in in
your paper, not omy in America, but foreign
countries, as far away as China. countries, as far qway as
ingara Fanls Acetylene
Co.i. Niamara Falls. N. Y.
can truy shy that we have received more
lennefit during the past forl years than from
any other advertising medium we have used. Farr \& Farr. Chicago. 11
\& Farr. Chicago. D11.
atnount of inguirise that come in to us 1 it
astonishing; more than we ever expected.
 proves the wide circumation of yort journal.
Turner Brass Works, Chicago, III. only a large niumber of replips, but very
satisfactory sales. Have rarely had any $\underset{\text { As }}{\text { Oh ectricient works. Cleveland, }} \underset{\text { adrer }}{\text { Elising medium, }}$ it is Motsinger Dever. it is in in a class by itself.
Ind. We have found no other paper whicb brings u
as many inquiries.
Rhone \mathcal{A} Electric Co
 advertising in other papers, and from al
parts of the world. (Continued on page 400.)
 power cross feed, either plain, compound or ar metric lead screws : also draw-in chuck, ear cutting, milling and taper attachments. Heavy, rigid, and, above all else. accurate. Suitable for electrical and repair work, tool makers. gunsmiths, technical schools and any Send for Catalogue " B "

THE SENECA FALLS MFG. C
666 Water Street, Seneca Falls, N. Y., U S. A.
WERE JUST AS THANKFUL
harness as we are for a carload. If we receive
your
 your order for one item others will come iu
time. That's how we've built up our busi-
ness to its present mammoth proportions.
in "umure" Our "Murray"' work has stood the test of
years and our best customers are those years and our best customers are those who
 Mies at 828.50 each and up. Our mam-
moth line of Buggiees, Phaetors, Driving
Wagons, Surreys, Ple asure Wagons Wagons, Surreys, Ple asure Wagons
Spring Wagons, Milk Wagons, Bakeev
Wagons, Delivery Wagonso Grow Wag-
ons, Laundry Wagons Farm Wazons Buggy Harness, Wagong Harness wagons,
les, is an exposition in itself, aud we invite quarters when visiting Cincinnati. It will be a pleasure for us to show you thr pugh, whether you wish to buy r not. To those who are unable to call and examine our stock " nersnn, we will
gladly mail FREE upon application our large illustrated Catalogue, No 64 giving prices
on our "Murray" work, which we sell direct from factory to consumer, allu which we

THE WILBER H. MURRAY MFG. CO. Nos. 323 to 329 East Fifth Street, CINCINNATI, OHIO.

THE SAMUEL WINSLOW SKATE MFG. CO.

Manufacturers of PLAIN AND WINSLOW'S BALL-BEARING SKATES worcest

THE KELLEY PATENT THE KELLEY PATENT
IMPROVED BERRYMAN Feed-Water Heater \& Purifier BENJ. F. KELLEY \& SON,
6 40TH Street,
New York Ofice

Pateotel Ajpil sal ive.
Simple, Durable, Economical, Clean.
raised to clean or remove obstruc-
tions withen the
the tobacco. No Nicotine can enter
No center draft to leave nburned tobacco around the sides. Openings for smoke opposite the stem, sn that smoke passes around
owl before entering the stem, insuring clean, sweet smoke. Pipe never burns out because extra tobacco Bowls may be had at a fraction of cost of pipe. PRICES, prepaid by mail to U. S. and Canada: French nouthpiece. 50c. each. French Briar, first quality, bent or straigbt stems, amberoid mouthpiece. 75c.
 you sell will sell otbers. Write for price list. Address,
FRAN KLIN R. PAINE, Sole Patentee and Manufacturer, Duluth Minn.. U. 8. A.

Jaluable : Books!

REVISED and ENLARGED EDITION of 1901 The Scientific American

Cyclopedia:

15,000 Receipts. 734 Pages. Price, $\$ 5.00$ in Cloth. $\$ 6.00$ in Sheep. $\$ 6.50$

The Progress of Invention In the Nineteenth Century by EDW

\section*{| lopical |
| :---: |
| ingivat |
| import |
| bookt |}

EXPERIMENTAL SCIENCE.

MAGIC $\underset{\substack{\text { stage } \\ \text { sions, inclusions and Sing Trick Phentictography }}}{\substack{\text { Piver }}}$

A Complete Electrical Library. ${ }^{\text {By }}$ Prof. т.

Arithmetio of Electricity
A138
Pazes
1.00

Fur descriptive carcular
MUNN \& CO., Publishers, 36I BROADWAY NEW YORK

Smith
cite
cit enabies us to get in touch with a class which it is very desirable to reach.
erciles
Float
works
s. Springfield, $\underset{\substack{\text { Hercutes } \\ \text { Mave } \\ \text { Have }}}{\substack{\text { and }}}$ always considered a card in the Scientific American as ore of the very best innest-
ments in advertising we have ever made.

w. Mason \& CO., Providence, \mathbf{A}.

 abroad.
 always count.
matic Reducing Antomatic reacing Vatve Co., Chi-
case brought us more inquiries than any other
icayo Form Co., Chicago, m, mas of it
class. Book-Keeper Publishing Co., Detroit,
Micheren valuable advertising medium. Will use it lib-
A a valualle edvertising medium. will
erally the coming year.
 American brougt
amount invested
On Cuff Co., Windsor,
Conder
Co carefully check returns, and those from your

Wm. G. Willard, St. Lonis, Mo

$\underset{\text { Have received inquiries and and orders from nearl }}{\text { F. }}$
 $\underset{\substack{\text { over. } \\ \text { sult. }}}{ }$
Moran Flexible Steam Joint Co., LouisQueen tions issued.

 extent hot been rreaty surprised at the wide
eate been received.
hrom
 pectations.
magazines.
Sebastian tathe Coid Cincinnati, 0 .
We feel that re eoil ot ot do business
feing represted Thompso

Pen-Carbon Manifold Co., New York

Business and Personal KJants.
WEAD THIS COLUMN CAREFULLY.-YOU numbered in consecutive order. If you manil
facture these cooss srite us and one tha we vil
send you the name and address of the party send you he name and adaress of the party desir
ing theuformation. Inerery case it it neres.
sary to give the number of the inquiry.

Marine Iron Works. Chicago. Catalogue free
Inquiry
in gum copal.
"C. s." Metal Polish. Indiarapolis. Samples free.

water wheels. Alcott \& Co., Mt. Holly, N.J. Inguiry No. $1 \mathbf{1 6 9 5 . - F o r}$ manufacturers of penny-
inthesiot machines. Stencil Machines.-A.J. Bradley, 101 Beekman St. N.Y.
Jnguiry No. 1696.- For slot machines for wax miatches.

 Gasolne
Chicazo.
sior maryines. \mathbf{N}. 1698.-For manufacturers of excel
Foot presses and dies. Amer. Hdw. Mfg. Co., Ottawa inguiry No. 1699.-For manufacturers of planMachine chain of all kinds. A. H. Bliss \& Co. North
Attleonoro Mass.
 cured in a small way.
Refecting telescope 12 in. ap. 6 ft . long, 990 . т. Box , Camden. N. J.

In puiry No. 1701. and pool balls and cues.

Sawmill machinery and outfts manufactured by the
 Rigs that Run. Hydrocarobon system.
Louis Motor Carriage Co., st. Louis, Mo.
Inguiry No. 1703.-For manufactáre
tongues, such as are used in harness snaps.
Ten days' 'rial given on Daus' Tip Top Duplicator
Felix Daus Duplicator Co., 5 Hanover St.. N. Y. City. Inquiry No. 1704.-For manufacturers of acety-
lene gas machines.
Gear Cutting of every description accurately don The Garvin Machine Co.. 149 Varick , cor Spring Sts., N.Y chninery. No. 1705.-For manufacturers of ice ma-
New Book, Electric Gas Liphting. 50 c . Send for full
descriptive circulars. free escriptive circulars, free. Spon \& Chamberlain, (Continued on page 401.)

Why Don't You

 probems that daily confront the
average engineer?

Tülley's Handbook on

 Engineeringwill not only solve the difficulty but
will make a better eng ineer of you.
 the foremost pract.
engineering field.
If you don't w engineering field. .ant the book. send
for you dompht want which briefl de-
for beribes it and is sent for the asking

HENRY C. TULLEY \& CO.
2222 Wainwright Bldg. St. Louis, Mo., U. S. A.

TELEPHONES For EVERYBODY
 AUTOMATIC

$3 / 2$ H. P. GAS ENGINE CASTINGS

 Wm. T. COMSTOCK, Pub., 23 Warren St., New York

 WATCR FAGTORY, MACHNERY. W. Wi.

MODELS \& EXPERIMENTAL WORK

PIIII|

APATENT GIVES you an exclusive right to your invention for a term of seventeen years. You can sell, lease, mortgage it, assign portions of it, and grant licenses to manufacture under it. Our Patent system is responsible for much of our industrial progress and our success in competing in the markets of the world. The value of a successful Patent is in no degree commensurate with the almost nominal cost of obtaining it. In order to obtain a Patent it is necessary to employ a Patent Attorney to prepare the specifications and draw the claims. This is a special branch of the legal profession which can only be conducted successfully by experts. For nearly sixty years we have acted as solicitors for thousands of clients in all parts of the world. Our vast experience enables us to prepare and prosecute Patent cases and Trade Marks at a minimum of expense. Our work is of one quality and the rates are the same to rich and poor. Our unbiased opinion freely given. We are happy to consult with you in person or by letter as to the probable patentability of your invention.

Hand Book on Patents, Trade Marks, Etc., Sent Free on Application.
MUNN \& CO., Solicitors of Patents,
625 F Street, Washington, D. C.
361 BROADWAY, NEW YORK

TYPEWRITERS

Straightens It 0ut

Che Cypewriter Exchange

 432 Oiamon st. Livus, Mo.

to six ou Typeerriters of al makees. semit or catalonves. MOTORS. most the simplest

 Traicoit Boat Mif. Co, End Your IGNITION TROUBLES Electric Ignition for Gas and Gasoline Engines
 MAXWELL ENG. CO., ROME. N. Y. the mietz \& weiss KEROSENE

High Class Hydro Carbon Motors,

 REGEALED ICE MACHINES

SCIENTIFIC AMERICAN

for the year 1902
Subscription Price, " $\$ 3$ a Year 3 Months Trial, 50 cents

Inquiry No. 13006.-For manufacturers of punch.
Manufacturers of patent articles, dies, stamping, ols, light machinery. Quadrixu Manufacturing Con Inquiry No. 1707 .
pumps for driled wells.
Designers and builders of automatic and special machines. of all kinds. Inventions perfected. The W.
A. Wilson Machine Company, Rochester, N. Y . Ilanuiry No.
Wanted to manufacture machinery or anything for the eouthern trade. Correspondence soicitite. Stever
son Machine and Repair company, Bryan, Texas. Inquiry No. 1709.-For makers or dealers in 24
inch mill rocks. inch mill rocks.
The celebrated "Hornsby-Akroyd" Patent Safety Oil Engine is built by the De La Vergne Refrigerating Ma.
chine Company. Foct of East 138th Street, New York. Incuipry No. 1710.- - For manutacturens of orn
ances for burning crude petroleum in cook stoves. The best book for electricians and bernners in elee
tricity is ". Experimental Science," by Geo. M. Hopkin By mail. 84 . Munn $\&$ Co., pubishers. 361 Broadway, N. Inquiry No. $1711 .-$ For manufacturers of trac
tion ennives for transortation urposes and for auto

Wanted-Patent articles of merit to manufactur and place on the market. Will buy or pay royalts
Give full particulars. Address Sidney Folder Co, Sid Give full particulars. Address Sidney Folder Co.., Sic
ney, Ohio. ties. ${ }^{\text {Ing. }}$
experimental machine shop.-We are not usin our shop at present. Well equipped with lathes, sbape
woodworking machinery. etc. Will rent use and powe woodworking machinery. etc. Will rent use and powe
very low. Fine place for automobile work. Billing Clapp Co., Boston, Mass,
Inquiry No. 17.13.-For. dealers in imitation gola
jewerry, such as watches, etc. ar Send for new and completu catalogue of Scientific
and other Books for sale by Munn \& Co. 3 Bil Broad as New York. Free on apolication.
Jor iniry No. 1714.
The subscribers have invented a rotary engine utillz ing expansion of steam-thoroughly steam tight-with
an adjustable cut-off $;$ and investors and practical en gine builders are invited to correspond. as the enkine will be shown them in actual operation. Expansion Rotary Engine, P. o. Box 1933, Boston.

 Inquiry No. 1717. -For
ing electrical power plants.
Cal nowiry No. 1718.-F
Inquiry No. 1720.-For dealers in high-presur
 Innuiry No. 1 1.22.
springs for clocks. Inquiry No.
rope machinery.
1723.-For manufacturers of wire
 Whichiry No. 172.5 -For manuacturers of stand the action of Portor Inquiry No. 1726.-For manufacturers of mine

by Inauiry No. 172S.-For marine engines operated

 Inquiry No. 1732.-Fior manuf.
in aluminium kas and steam fltinks.
Inquiry No. 1733.-For manutacturers of alumi
nium tubing.

IInairy No. 1735.-For manufacturers of unplatInquiry N 0.1736 . For manufacturers of brass
and aluminium castinks for mmallmodel engines. Inquiry Nan.1737 .-For manafacturers of iron
and wire fencing. . Inquiry No. 1738.-Fior manufacturers of the Inquiry No. 1739.-For
making machinery.
Inquiry No. 1940.-For a gystem for furnighing
water to dwellings, where there are no water works. a Inquir. No. 1741-Fin ar machne on the style of
Inquiry No. 1742.-For manuacturers of the
"Grison Speed Reducer." Inquiry No. 1743.-For manufacturers of alumi-
nium goods. type. Inquiry No. 1745.-For a
nada, of small maileabie casings.
Inquiry No. 1746.-For address of parties making
Inquiry No. 1747,-For the latest improved burgInguiry
hold novelties.
Juquiry No. 1749.-For manufacturers of novel.
Inquiry No. 1750.-For manufacturers of coal-
heading machines.
Inquiry No. 1751.-For manufacturers of labor-
savink devices.

Inguiry No. 1753.-For a machine for cutting,
Inquiry No. 1754.-For manufacturers of nails.
Inquiry No. No. 1755 .-For manufacurers of rubher
weather stripg.
Inquiry No. 1755.-For parties to make a ma-
chine for the nuanufacure of carbon paper.

\$10,000

Donated to Hypnotism

Dr. X. La Motte Sage, a Noted Scientist, Donates $\$ 10,000$ To Be Used for the Publication and Free Distribution of a Valuable Work on Personal Magnetism and Hypnotic Influence.

Wants to Demonstrate the Practical Value and Power of this New Science in Business, in Society, in the Home, in Politics, and as a Factor in Influencing and Swaying the Minds of People.

Prominent Business and Professional Men, Ministers of the Gospel and Others Heartily Endorse the Movement-A Noted College Undertakes the Work of Free Distribution.

Any One May Get a Book Absolutely Free so long as the Edition Lasts and Master the Hidden Mysteries of this Marvelous Power at. His Own Home-Many Jealously-Guarded Secrets Made Public.

Carnegie is giving away his fortume for librarie Dr. X La Motte Sage proposes to put the most into the homes of the people. For this purpose h has just donated $\$ 10,000$ and a big publishing house is busy day and night turning out the books fo free distribution. The book Dr. Sage wishes to distribute free of charge is entitled "The Philoso phy of Personal Influence." It is heartily en
dorsed by the ablest business men, ministers, doctors and lawyers of two continents. It is beautifully illustrated with the finest half-tone engravings, and every page is brimful of intensely interesting and practical information. It is a book which should be in every home. It is by far the most remarkable work of the kind that has ever been written, and it has truly created
sensation in the book world. It explains numerous inst
have been secretly and instantaneously cont by hypnotic influence. It teaches you how to protect yourselves from the use of hypnotic powe over you. It tells you how to develop and use
your magnetic power so as to wield a wonderful influence over those with whom you come in
contact.
Men lik
Men like Vanderbilt, Morgan, Rockefeller and oxplained in this book and have the very methods business to pile up millions. This book lays bar secirets in the lives of rich men of which you have never dreamed. It reveals all the hidden myster ies of personal magnetism, hypnotism, etc.. and discloses the real source of power and influence in of inestimable value to every person who wants to succeed in life. Many of the most prominent public men in this country have obtained this book and read every line, and they are daily using its teachings to their own profit and gain.
It tells of a secret instantancous
It tells of a secret, instantaneous method by which you may produce a state of insensibillty to pain in any parts of the body, so that the teeth
may be extracted and surgical operations performed without the use of cocaine, ether or anaes thetics of any kind. It gives you the power to induce sleep in yourself or others at any time of the day or night you may desire. It enables you to develop your mental faculties, improve your memory, eradicate disagreeable tempers in children, and to develop within yourself a marvelous make you practically irresistible. It will give you a force of character of which you have little dreamed, and will truly make you a leader of men. No matter how strong this description may seem, it is not one-half as strong as the marvelous power explained in this wonderful work.
If you have not achieved the success to which would like to secure a good paying position, obtain an increase in salary, if you care to rise higher
in your accepted business or calling, if you desir to wield a greater intluence over others, if you or if you long for fame or renown, you should write for a copy of this remarkable book at
The following extracts from a few of the letter eceived from some of the people who have read the book give an ite on it unual ander and Mreat value
Mrs. Mary Milner, 312 L Street, Pueblo, Col., in a at or sleep. I says: "I was so worried I could no used the methods on myself with wonderful suc cess. To-day I am perfectly well. I would not part with the information you gave me for any money.'
Mr. T. L. Linderstruth, 30 East South Street, magnetism is a fortune to any one starting in life It is absolutely sure to bring success.'
A. J. McGinnis, 60 Ohio Street, Allegheny, Pa., says: " When I wrote for your book I was labor Thg by the day. Now I am managing a business This is certainly the best proof that could be offered of its great value. I advise every man who
wishes to succeed in life to get a copy at once." G.S. Lincoln, M.D., 101 Crutchfield Street, Dal Tex., writes: "Your methods of personal intlu ence are marvelous. I have used them on my pa tients with wonderful results.'
S. R. King, M.D., Gillam. Ind.. writes: "You have sent me the most remarkable book I have magnetism is simply magnetism is simply grand. It gives one a powe
and an influence over others which I did not dream it was possible for the average man to ac quire. Your book is worth more than gold to any one starting in life. Its value cannot be esti mated. My only regret is that it was not in my hands when I wasa young man
The New York Institute of Science has under to. Big roller presses are running day and night to supply the demand until the $\$ 10,000$ worth of books are distributed free. On account of the g eat expense incurred in preparing and printing this book, only those are requested to write for free copies who are especially interested and really and truly desire to achieve greater success, obtain more happiness, or in some way better their con-
dition in life. Please do not write through mere curiosity, as the free edition is limited. If you want a book, write to-day, as the copies are going very fast. Never before in the history of the publishing business has there heen such a great demand for any book as to-day exists for "The Philosophy of Personal Magnetism.'
Remember, at the present time it will be sent to
your address absolutely free, postage Addrrss New York Institute of Science, Department P T 7, 1935 Broadway, New York.

A TRUSGOTT BOAT

Simple, Safe, Reliable, Speedy. Ruilt either cabinel, or open in inges from 16 to 110 fee
in lenkth.
For cor catalo
giving full iniormation write Truscott Boat Mfg. Cors

 CHICAGO, ILL.

Sampling.:and: :Testing :.Works, 1225 \& 1227 Spruce St., ST. LOUSS, MO. | The largest and most com |
| :--- |
| $\begin{array}{c}\text { plete ere } \\ \text { existence testing works in }\end{array}$ | existence for making and

finds of pratical workine
tests of ores to determine tests of ores to determine
the most suitable method of
treatment
Plant for Coal Washing,
Coking and Steaming Tests
Assays, Analyses and
mical Investigations. Mines and Metallurgical Processes Exam
and reportod upon.

PleasingYourPatrons

等路
 THE

John R. Keim Auto-Steam Engine Its reputation is its best testimonal. JOHN R. KEIM, Buffalo, N. Y., U.S.A THE OBER LNTHES

Builders from a Row Boat to a Yacht
Cherokee and DeKalb Streets,
$\frac{\text { st: Louss: mo }}{\text { Fpesh Water for Old Salts }}$
 DISTILLED WATER RALSOO F wow Watir Silll

trade checks
ALUMNUM OR BRASS,
BOc. 100 in QUANTITIES Samples \& Circolars free.
Schwaab Stamp\& SealCo. MILWAUKEE, wis.

a langilific Indiriant

DIXON'S CYCLE GRAPHITES. Chains, Gears
Coasters. Send 10 cents for san
stick or tube.
JOSEPH DIXON CEUCIBLE CO.

Address POSITIVE ELEVATOR SAFETY CO , 510 Pine Street, St. Louis, Mo., u. S. A.
 whose cylinders of INFUSORIAL EARTH retain every particle of solid matter, and allow BERKEFELD FILTER COMPANY, 4 Cedar Street, NEW YORK.

Simple.
9 Pieces
Light.
Guarantee
Satisfactory.
 A Machine for Burning Pulverlzed Coal.
Absolutely Perfect Combustion. Our tests show that we can evaporat almost twice the amount of water to one pound of coal than other systems now in use.
A Saving in Coal of over 50 per cent. Leaving only a small per cent of ashes i the boiler-pit, and no clinkers.
the smoke question completely solved.
If you can arrange to have some repr sentative in Chicago visit the plant 10 cated north of the machine shops belong ing to the Union Stock Yard \& Transit Co., you will decide, as the best engin eers and experts have done, that all we claim for
Write for particulars to N. Whitman, Secretary
THE HOT BLAST SMOXELESS STOKER CO.
167 New Exchange Bldg.
UNION STOCK YARDS, CHICAGO.
EDSON'S SYSTEM for the olORHEES ree

WIRELESS

 telegraphy

 money orders, etc., payabie
Northwestern Wireless Telephone and Telegraph Co, suite 410-11, 84 La Salle St., Chicago.
| Can Sell Your Farm

Protect your Buildings by Installing MONTAUK FIRE DETECTING WIRE.

Approved by the New York Board of Fire Underwriters,
Montauk Fire Detecting Wire Company,

Electrical Scientific Novelties
Models of Railways. Motors, Locomotives

NO SPOTS

The Universal Specialty Co.

 OUR 1901-1902 CATALOCUE 20,000 BOOKS
ent free to your address. Postage 5 c . All books carried
in stock. One price toeverybody. We save you money. 266.268 WBOOK SUPPLV COMPANY, 266.268 Whasesh Aver,
Largest Mail Order Bookseliers in the World.

PROSPECTIVE B0AT BUYERS.

Patents, Trade Marks, COPYRIGMTS, etc., Address MUNN \mathcal{O} GOng $\begin{aligned} & \text { Sof Picitors } \\ & \text { of Patents. }\end{aligned}$ Office of the SCIENTIFIC AMERICAN
$\mathbf{3 6 1}$ Broudway, New Ioris.

FIRST OFFER, \$1
 Mfr. of Special Hardware and Wire Goods.
170 and 172 CENTRE ST.. NEW YORK.
 SCREW THREADS.
 long Four staneor machine BLAKE \& Joinsson, CREATEST INVENTION
 ECONOMICAL TO RUN
Pay double price and avoid terrible accidents by
using Gasolene
INDUSTRIAL ENGINES OF ALL KINDS
NEW YORK KEROSENE OIL ENGINE CO. 31 Burling Slip, New Yor

31 Burling Slip, New York.	
DRAPER'S	THERMOMETER
RECORDING	HYGROMETER

 HYGROMETER
These instruments give continuous
records in ink on wweily charts of
the temperature and percentage of the temperature and percentage of
moisture in the air.
Standardized and Fully Guaranteed. Write for particulars. $\underset{\text { The Front Street, New Yor }}{\text { THE }}$ movirs Picture machines avo filus

The WIn. D. Aidigul Compant mandfacturers of
SPRINGS
Of Every Description.

Springs of our make are in use on many Battle
Shtps and Gun Carriages for Coast Defence. Mechanical experts requiring Springs would do
well to correspond with us. 25 North Clinton Street, CHCAGO, 山L.

Bath Iron Works,

BATH, MAINE, U. S. A.

Shiphuilders and Engineers

> Among the large number of vessels that have been built by this Company are the following: e e

For the United States Navy:

First-Class Battleship "GEORGIA" (15,000 tons).
Protected Cruiser "CLEVELAND."
Monitor "NEVADA."
Gunboats "MACHIAS," "CASTINE," "VICKSBURG" and "NEWPORT."
Practice Cruiser "CHESAPEAKE."
Torpedo Boats "DAHLGREN" and
"CRAVEN" (30 knots), "BAGLEY,"
"BARNEY" and "BIDDLE" (29 knots).

For the U. S. Treas. Dept.:

Light-house Tender " MAYFLOWER."
Light-vessels No. 66 (New South Shoal), No. 68 (Fire Island), No. 69 (Five Fathom Bank), No. 71 (Diamond Shoal).

For the U. S. War Dept.:
Army Transport "GRANT."
ALSO

The well-known Ocean-going Steam Yachts:
"APHRODITE," "ELEANOR,"
"VIRGINIA," "PEREGRINE,"
"PANTOOSET," "ILLAWARRA."
The celebrated New York Passenger Steamer "CITY OF LOWELL," etc.

This Company has exceptional facilities for repairs, including a 100-Ton

Steel Dock Crane.

Correspondence solicited.
Address
JOHN S. HYDE,
Vice-President and Gen. Manager.

The Battleship "GFORGIA," illustrated on the outside corer of this paper, is being built by this Company.

WITTON TOURING CAR The Season's Successful Creation

 no noise, all
pointor afdust-
ment dirrecty
accesssible
ace)

New Standard Dry Battery STANDARD OF TME U. S. NAVY

$\$ 2.00$ f. o. b. New York NEW STANDARD FLASHLIGHT
Absolutely Highest Standard in the World for
Telephones
Bell Work Gasolene Engines Carriage Lights, etc.

All sizes and prices
accordingly.

8 cell, Oak, \$5.00 f. o. b. New Yor NEW STANDARD "AUTOGAS" Gas Engine Battery is used by more launch
and automobile owners than any otber
dry battery in the market.

While as low as any in price the quality stands alone, there are none
"JUST AS GOOD."
be please to

WILLIAM ROCHE, Inventor and Sole Manufacturer 42 Vesey Street, New York City

Coites (râars

 -made at kerwest- the most favorable climatic conditions and bacco. If we had to pay the imported cigar tax our brands would cost double the money. Send for booklet and particulars.CORTEZ CIGAR CO., KEY WEST.

NEW ENGIAND WAICHIS

 Our New Enamel Bookletshowing the daintiest line of enamel watches in all colors is
just out and will be sent on just out and will be sent on
application.
THE NEW ENGLAND WATCH CO. $37 \& \underset{\substack{\text { New York } \\ 39 \\ \text { Naiden }}}{149 \text { State Stre }}$ Clicago. Spreckels Building, San Francisco.

RUS及Minixinmmura Columbian Spirit. A Chemically Pure Metbyl Alcohol. Price in buls.
and 36 bbls.. $\$ 150$ per gallon. Columbian Spirit cannot

MANHATTAN SPIRIT CO.
Sole Mauffacturers, $\begin{gathered}\text { BUFFALD, N. Y. } \\ \text {. }\end{gathered}$

NEW MODEL 6 ELMORE A Fifteen Rindred
Dollar Automobile fo
\$800.00.

RIVETT LATHE rom $\$ 100$ to $\$ 1700$ Each. GOLD MEDAL
AT THEPAN-AMERICAN EXIPOSITION Faneuil Watch Tool Company, BRIGHTON,

ELECTRIC MOTORS

THE PRACTICAL VALUE

and utility of the Lundell Motors are due to their superior design and scientific principles, and have a high efficiency and remarkable endurance. They range in size from $1-20$ horse power up to 1,000 horse power, and will operate the most delicate mechanism or drive the heaviest machinery. They are non-sparking, compact, economical in current consumption, simple and reliable in operation, and give the Bulletins No. 10206 and 1020\%.

SPRAGUE ELECTRIC CO.

MOTORS

LUNDELL

Manufacturers of High Grade Electric Apparatus Goneral Offces:
527-53I WEST THIRTY-FOURTH STREET, NEW YORK CITY
FANS

BICYCLE MOTORS, \$60

STEWARD'S WONDER
ACETYLENE BURNERS $\begin{gathered}\text { sample 2c.instamps } \\ \text { ABk for catahovueC }\end{gathered}$

LEWIS NIXON

Q THE

CRESCENT SHIPYARD

Elizabethport, N. J., U. S. A.
Some Vessels Recently Built at the Crescent Shipyard

GUNBOATS
Annapolis. ${ }_{\text {Submarine }}$ Tor Jedo-Boat.-Holland
YACHTS
Eireba, for Henry Darlington, Pittsb, Me.
Jos phine, for P. A. B. Widener, PhiladelphiEmeerala, for J. Rogers Maxwe.ı
Freelance for F. A. Schemerhorn
Stean Yacht ©ilumbia, for J. Ha
Steam Yacht rolumbia, for J. Harvey Ladew. Aux. Schr. Yacht Genesee, for Jamees D. Watson.
Aux. Schr. Yacht Edris, for Chester \boldsymbol{H}. Chapin.

FERRYBOATS
Cincinnati, double deck, screw ferryboat, for Pennsylvania R. R. .

STEAM TUGS and LIGHTERS
 almipa, for Pennsy Hania R. R.
 Fireboat for City of Buffalo.
LIGHTHOUSE TENOERS AND GOVERNMENT VESSELS
Manqrove, for U. S. Treasury Department.
Two six-orropeller steamers a and eight Barges for
Yukon River navigation, for Empire Transportation Company
Steam Tug V gilant, Five Cubar. Re ence Cutters. Six Russian Torpedo-Boats.
Coast Survey Coast Survey Palı! inder.

PADDLE.WHEEL STEAMERS Maria Hannabergh, for U. R. Colombia.
Moctor Townsend, for United States.
Sidewheel Steamer for Old Dominion S. S. Co. STERN-WHEEL STEAMERS Caura, for Venezuela Games Deirrick, for United States. Antioquia, for U. S. Colombia TWIN-SCREW DUMPING BOATS Ciuderella for City of New York.
Two additional Diumping Boats of above type,
Aschenbroedel and Generentola. BARGES
Rodnlfo II. for Mexico. Oil Barge, for Jas. W. Lee, N. Y. Three Wattr Barges for U.S. Navy Department. NOW IN COURSE OF CONSTRUCTION Monitor Florida, for U.S. Navy. Two Torpedo-Boats, Nichulson and \dot{O}^{\prime} Brien, for U . Six Submarine Torvedo-Boats of the Holland type Two Cruisers and Troopships, Mexican Navy. Oil barge for U.S. Pripe Line for H. C. Pierce Stear Fisheries Boat, for Gulf Fisheries Company
Ferryboat, for Mrs. Lucy Carnegie.

This is one of the Most Thoroughly Equipped and Efficient Small Yards in America.

Has Water Front of 400 feet.
Depth abreast of Yard, 20 feet.

HOLLAND SUBMARINE BOAT

HOLLAND TORPEDO BOAI CO.

 100 BROADWAY.NEW YORK.

The Navies and Armies
 of THE GREAT NATIONS BAUSCH and STFDFO BINOCULARS IOMB-TFISS

SEEING POWER, IMMENSE FIELD OF VIEW, STEREOSCOPIC or PLASTIC IMAGE, COMPACTNESS, LIGHTNESS and OPTICAL

PERFECTION
they are the superior
Bausch \& Lomb BNGMETHO
are constructed on the P. rro Prism prin ciple and stand next in all advantage SOLD BY ALL DEALERS
\qquad Booklet Free.

Bausch \& Lomb Optical Co. Incorporated 1866 . ROCHESTER, N. Y.
25th Street \& Broadway, New York.
State \& Washington Street, Chicako.

east Wing of the new machine shop of Wm. Cramp \& Sons Ship and engine building Co., Philadelphia.

Structural Steel

OF EVERY DESCRIPTION

ENGINEERS AND CONTRACTORS
Bridges, Buildings, Roofs, Trusses

Forty-three-ton Jupiter Steel Castings for the Battleships Rhode Island and New Jersey.
Mr. Eugfnfe Euwarise, General Manager United States Steel Co., West Eiverett, Mass.
Bos'ron, November 9, I 901.
Dear Sir.-The Directors of this Company realize that during your long connection with the Midvale Steel Co. of Nicetown, Pa., you personally saw much of the growth of that great steel plant, now valued at twenty millions of dollars, also that it was under your six years' management that the great steel casting plant of the General Electric Company, in Lynn, increased its output 300 per cent. They therefore desire, after your year's management of our Everett plant, that you give them your opinion as to the advisability of immediately increasing said plant to the New England demand for Jupiter Steel Castings. Respectfully,

UNITED STATES STEEL COMPANY,

Chardeb. Miller tramers

United Staths Stefi Company, Boston, Mass.
Boston, November if, igor.
GENTLKMRN-I have your esteemed favor of November 9 requesting my opinion as to the advisability of increasing our present plant.

The situation briefly is as follows: With our plant at Everett we are so overrun with unsolicited business that we are constantly in danger of displeasing our customers by delay in filling orders. This condition will be partially improved as soon as our addition of roo x i 30 feet now under way is completed, and the new fifteen-ton crane in position. While this means a total of 300 feet in-lengtl for the main foundry, I am of the opinion that it should be immediately increased to 500 feet to fill the orders that the mere knowledge of our capacity would bring to us.

But-there is another field for Jupiter Steel, not yet touched by our Company, which would be a very profitable one. There is a large demand in New England for heavy stecl rolls in roller mills and rubber factories. These rolls weigh from I, 000 to 20,000 lbs. apiece, and we have already turned away many orders on account of being so full of other business. The making of these rolls by day, and the pouring of steel billets at night, would easily take up the capacity of another complete plant, the duplicate of our present one, of a length of 500 feet.

I believe that both of the above additions should be built immediately, and would greatly increase your dividends. You have a splendid location, with unexcelled railroad and water facilities, for the growth of a plant equal to those plants with which I have been connected and to which you refer.

Very truly yours,

The above is the advice of a successful and practical steel manufacturer who found it to his advantage to leave the Midvale Steel Co. to improve his position and identify himself with the steel casting department of the General Electric Co. as Superintendent, officiating as such for six years. From the latter connection he considered it to his interest to associate himself with the United States Steel Co. as General Manager, realizing the great superiority of our product. This should be sufficient evidence of the vast strides and adrance of Jupiter Steel Castings.

No branch of industry in which man engages promises a return of such liandsome profits as that of the manufacture of steel. The dividends derived from the prosecution of legitimate steel manufacture far outrank the net returns from any other line of business. The wonderful stimulus which the success of the past three years has imparted to the steel business is evidenced by the tremendous outlay which has been made in this department of industry during the past year, the results of which can only be hinted at, for they will not be reducible to statistical form until 1902. It is sufficient to say that from every branch and avenue of the steel business come most favorable reports of progress and renewed achievements. The greatness of the United States lies in her internal resources, agricultural, manufacturing and mining. Agriculturally, the country is fairly well developed, in mining the same, but the manufacturing of steel has been up to within a few years a comparatively infant industry. It is in the expanding and developing of this branch of the Nation's wealth that the greatest successes of the future are to be looked for. Steel to-day is in such a position that it is right to invite capital toward its advancement. It is the mission, therefore, of everyone interested in the development of this resource to see that the industry is afforded every possible encouragement to put it to the front and let it speak for itself, for if this is done it will raise up its own friends and rally its own supporters.

The greatest publicity has been given to our enterprise, and has resulted in the present enormous demand for Jupiter Steel Castings, which are steadily and permanently displacing more expensive forms of steel, yet being of equal lightness, strength, and quality, and are an improvement over the ordinary steel casting because they require no annealing, being strictly pure steel of uniform hardness or softness throughout, and can be forged, welded and tempered.

Our foreign patents, now being negotiated, show conclusively a source of dividends equal to the entire capitalization of the Company: As a rule, stock in well-managed manufacturing companies is generally bought up by those in some way connected with their management and the outsider has little chance except at a high preminm and a correspondingly low profit. But this is an unusual opportunity for people of limited means to secure an investment already paying a large income, an opportunity such as is usually offered to capitalists only, and the man with a few hundred dollars gets a chance.

In this connection it will be noted that the Scientific American published an article on Jupiter Steel, illustrated on the first page of the edition of October 12, and described in the following pages. A copy of same will be mailed on application. This was very flattering to us, and we consider it the best endorsement that Jupiter Steel has ever received.

After long deliberation we agree with our General Manager that it is to our advantage to immediately enlarge our Works to the extent recommended, to take care of the New England Lusiness that is legitimately ours, and for construction will sell 40,000 of the 230,000 shares now remaining in our Treasury, at par, $\$ 5$ per share, full paid, non-nssessable, and drawing full regular quarterly dividends of 3 per cent. (12 per cent. per ammum), the next being payable January 27, 1902. It has been our experience that this opportunity will not long be open, as our previous offerings have invariably been over-ubseribet, the last by some $\$ 25,000$, which we are now filling from this block, and deem it advisable that you give our investment your prompt attention.

The United States Steel Company has been paying for the past two years quarterly dividends at the rate of i2 per cent. per annum on all its outstanding stock, and it is expected that this dividend rate will be increased as soon as we can enlarge our plant at Everett, Mass.

To those who are interested a full prospectus of the Company, together with a record of what has been accomplished in the past two years will be mailed on application. Preference will be given to subscriptions in the order of their receipt. All accepted subscriptions will draw the full regular quarterly dividend of 3 per cent. payable January $27,1902$.

UNITED STATES STEEL Co., No. 143 Oliver Stre st, Boston, Mass.

[^0]: Does not obstruct navigation. It can be desilaing bridce and other old types of movable bridges on the largest and most procressive railroads of the world, because of its many superior advantages. Twenty-eight large Scherzer Rolling Lift Rridges are now in successful operation and under con-
 struction; more than one hundred have already been designed and planned for railroa, street railwa struction; more than one hundred have already been designed and planned for railroad, street railway
 and highway traffic. The Scherzer Rolling Lift Bridge is the safest, simplest, most rigid, rapidl and highway trafic. The Scherzer Rolling Lift Bridge is the safest, simplest, most rigid, rapidly
 operated, efficient, durable, economical and artistic movable bridge ever constructed. Preliminary sketches and estimatcs furnished to responsible partife at any part of the world upon

 THE SCHERZER ROLLING LIFT BRIDGE CO.

